Please wait a minute...
吉林化工学院学报, 2025, 42(3): 17-24     https://doi.org/10.16039/j.cnki.cn22-1249.2025.03.004
  本期目录 | 过刊浏览 | 高级检索 |
基于自适应强跟踪无迹卡尔曼滤波的SOC和SOH联合估计#br#
张忠亮** ,刘兴德* ,梁家瑞 ,孙成,杭文宇 
吉林化工学院 机电工程学院,吉林 吉林 132022
Joint SOC and SOH Estimation based on Adaptive Strong Tracking Untracked Kalman Filter
ZHANG Zhongliang1, LIU Xingde2, LIANG Jiarui 1, SUN Cheng1, HANG Wenyu1, SUN Minghong1
School of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
下载:  PDF (2037KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为确保电池在使用过程中的安全性与效率,实时精确计算电池的剩余电量(State of charge , SOC)至关重要;为解决突发状况追踪、先验信息及动态环境存在的不足,提出了基于自适应强跟踪无迹卡尔曼滤波(Adaptive strong tracking untraced Kalman filter , ASTFUKF)对SOC估计。考虑到SOC估计的精度太依赖于电池模型的精度,随后利用ASTFUKF和扩展卡尔曼滤波(Extended Kalman filter , EKF)算法对电池SOC和SOH联合估计。根据SOC和SOH的时变特性来区分处理不同时间尺度可以优化计算策略和节省资源。实验对比不同算法在动态环境下的表现,结果表明所提出算法在HWFET工况下的平均误差为0.27%,最大误差为0.48%,在UDDS工况下平均误差为0.44%,最大误差为0.91%,能够大幅提升了电池SOC和SOH(状态-健康度)的估计准确度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  健康状态    荷电状态    自适应无迹卡尔曼滤波    联合估计    
Abstract:  To ensure the safety and efficiency of the battery during use, it is crucial to accurately calculate the remaining battery charge (State of Charge, SOC) in real time. To address the shortcomings of sudden situation tracking, prior information, and dynamic environments, an SOC estimation method based on the Adaptive Strong Tracking Unscented Kalman Filter (ASTFUKF) is proposed. Considering that the accuracy of SOC estimation is highly dependent on the accuracy of the battery model, the ASTFUKF and Extended Kalman Filter (EKF) algorithms are subsequently used to jointly estimate the battery SOC and SOH (State of Health). Distinguishing and processing different time scales based on the time-varying characteristics of SOC and SOH can optimize the calculation strategy and save resources. Experimental comparisons of different algorithms in dynamic environments show that the proposed algorithm has an average error of 0.27% and a maximum error of 0.48% under the HWFET condition, and an average error of 0.44% and a maximum error of 0.91% under the UDDS condition, significantly improving the estimation accuracy of battery SOC and SOH.
Key words:  health state      State of charge      Adaptive untraced Kalman filtering      Joint estimation
               出版日期:  2025-03-25      发布日期:  2025-12-20      整期出版日期:  2025-03-25
ZTFLH:  TM912  
引用本文:    
张忠亮, 刘兴德, 梁家瑞, 孙成, 杭文宇 . 基于自适应强跟踪无迹卡尔曼滤波的SOC和SOH联合估计#br#[J]. 吉林化工学院学报, 2025, 42(3): 17-24.
ZHANG Zhongliang, LIU Xingde, LIANG Jiarui , SUN Cheng, HANG Wenyu, SUN Minghong. Joint SOC and SOH Estimation based on Adaptive Strong Tracking Untracked Kalman Filter. Journal of Jilin Institute of Chemical Technology, 2025, 42(3): 17-24.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2025.03.004  或          https://xuebao.jlict.edu.cn/CN/Y2025/V42/I3/17
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed