Please wait a minute...
吉林化工学院学报, 2024, 41(11): 67-71     https://doi.org/10.16039/j.cnki.cn22-1249.2024.11.012
  本期目录 | 过刊浏览 | 高级检索 |
基于LSTM的并联残差网络电力系统短期负荷预测
徐铭谦**,高洪尧***,孙洋***,李九龙***,董吉哲*
(长春工业大学 电气与电子工程学院,吉林 长春 130012)
Short-term Load Forecasting in Power Systems Using LSTM-Based Parallel Residual Networks
XU Mingqian**, GAO Hongyao***, SUN Yang***, LI Jiulong***, DONG Jizhe*
(School of Electrical and Electronic Engineering,Changchun University of Technology,  Changchun 130012, China)
下载:  PDF (1341KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立了一种结合长短期记忆网络(LSTM)和并联残差网络(ResNet)的深度学习模型,旨在优化电力系统的短期负荷预测精度。该模型利用LSTM的时间序列分析能力与ResNet的深层次特征提取优势,有效处理复杂的电力负荷数据。通过三个关键性能指标,全面评估了模型的预测精度。此外,还通过详细的特征分析,进一步验证了输入特征的合理性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐铭谦
高洪尧
孙洋
李九龙
董吉哲
关键词:  长短期记忆网络    残差网络    负荷预测    
Abstract: 

A deep learning model combining Long Short-Term Memory networks (LSTM) and Parallel Residual Networks (ResNet) is proposed to enhance the accuracy of short-term load forecasting in power systems. This model leverages the time series analysis capabilities of LSTM with the deep feature extraction strengths of ResNet to effectively process complex electrical load data. The forecasting accuracy of the model is comprehensively assessed using three key performance indicators. Additionally, a detailed feature analysis further validates the appropriateness of the input features.

Key words:   LSTM      ResNet      Load forecasting.
               出版日期:  2024-11-25      发布日期:  2025-04-09      整期出版日期:  2024-11-25
ZTFLH:  TM715  
引用本文:    
徐铭谦, 高洪尧, 孙洋, 李九龙, 董吉哲. 基于LSTM的并联残差网络电力系统短期负荷预测[J]. 吉林化工学院学报, 2024, 41(11): 67-71.
XU Mingqian, GAO Hongyao, SUN Yang, LI Jiulong, DONG Jizhe. Short-term Load Forecasting in Power Systems Using LSTM-Based Parallel Residual Networks. Journal of Jilin Institute of Chemical Technology, 2024, 41(11): 67-71.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.11.012  或          https://xuebao.jlict.edu.cn/CN/Y2024/V41/I11/67
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed