Please wait a minute...
吉林化工学院学报, 2025, 42(1): 36-43     https://doi.org/10.16039/j.cnki.cn22-1249.2025.01.006
  本期目录 | 过刊浏览 | 高级检索 |
基于改进YOLOv8工业零件检测算法研究
孔志成1**,刘兴德2*,谢延楠1**,任洛莹1,余鹏泽1
(1.吉林化工学院 信息与控制工程学院,吉林 吉林 132022;2.吉林化工学院 机电工程学院,吉林 吉林 132022)
Research on the Improved Detection Algorithm of YOLOv8 Industrial Parts
KONG Zhicheng1**,LIU Xingde2*,XIE Yannan1**,REN Luoying1,YU pengze1
(1.School of Information and Control Engineering,Jilin Institute of Chemical Technology, Jilin City 132022, China:2.School of Mechanical and Electrical Engineering , Jilin Institute of Chemical Technology ,Jilin City 132022, China)
下载:  PDF (6989KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业机器人的普遍应用,机器视觉也在工业领域快速发展,与传统的人工装配相比,基于深度学习的工业零件的分拣,无论是在效率和稳定性等方面都具备明显的优势。提出改进YOLOv8s 工业零件检测算法研究,首先在原始模型基础上引人残差注意力机制(ResBIcKCBAM),通过结合残差模块(ResBlock)和注意力模块(CBAM),提高模型对关键特征的提取能力。其次,引人一种高效的多尺度特征融合网络(BIFPN),能够更好地融合不同尺度的特征,提高了模型对多尺度目标的检测能力。最后改进 Inmer-CloU 损失函数,用于提升模型的泛化能力和收敛性能。YOLOv8s模型在自制数据集上进行测试,测试结果平均精度 mAP 达到 79.5%,相较于原始模型 mAP 提升 2.1%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔志成
刘兴德
谢延楠
任洛莹
余鹏泽
关键词:  YOLOv8s   注意力机制   融合网络   损失函数    
Abstract: With the widespread application of industrial robots, machine vision is also developing rapidly in the industrial field, and compared with traditional manual assembly, the sorting of industrial parts based on deep learning has obvious advantages in terms of efficiency and stability. This paper proposed to improve the YOLOv8 industrial parts detection algorithm, firstly, the attention mechanism model (ResBlock_CBAM) was introduced on the basis of the original model, and the ability of the model to extract key features was improved by combining the residual module (ResBlock) and the attention module (CBAM). Secondly, an efficient Multi-scale Feature Fusion Network (BiFPN) was introduced, which can better integrate features of different scales and improve the detection ability of the model for multi-scale targets. Finally, the Inner-CIoU loss function was improved to improve the generalization ability and convergence performance of the model. The YOLOv8s model was tested on a self-made dataset, and the average accuracy of the test results reached 79.5%, which was 2.1% higher than that of the original model.
Key words:  YOLOv8s    attention mechanisms     converged networks    loss function
               出版日期:  2025-01-25      发布日期:  2025-07-05      整期出版日期:  2025-01-25
ZTFLH:  TP 241  
引用本文:    
孔志成, 刘兴德, 谢延楠, 任洛莹, 余鹏泽. 基于改进YOLOv8工业零件检测算法研究[J]. 吉林化工学院学报, 2025, 42(1): 36-43.
KONG Zhicheng, LIU Xingde, XIE Yannan, REN Luoying, YU pengze. Research on the Improved Detection Algorithm of YOLOv8 Industrial Parts. Journal of Jilin Institute of Chemical Technology, 2025, 42(1): 36-43.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2025.01.006  或          https://xuebao.jlict.edu.cn/CN/Y2025/V42/I1/36
[1] 李双远, 李天宇. 基于改进YOLOv5的安全帽佩戴检测算法[J]. 吉林化工学院学报, 2024, 41(9): 15-21.
[2] 余鹏泽 , 刘兴德 , 谢延楠 , 任洛莹 , 孔志成 , 胡文松. MSP-YOLO:用于识别水果的改进算法[J]. 吉林化工学院学报, 2024, 41(7): 18-25.
[3] 崔世磊, 孙明革, 高聪, 郭晓龙, 李迎岗. 基于YOLOv7的番茄检测算法优化与实现[J]. 吉林化工学院学报, 2024, 41(3): 25-30.
[4] 辛鹏, 娄铖. 基于改进YOLOv8的密集多人脸检测[J]. 吉林化工学院学报, 2024, 41(11): 24-30.
[5] 张 鋆, 李温温. RRT algorithm; path planning; target offset; variable step size; cubic B-spline curve 基于改进YOLOv5s的玉米田间杂草检测方法 [J]. 吉林化工学院学报, 2023, 40(5): 26-33.
[6] 金何. 基于深度学习融合网络的交直流电网故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(3): 93-98.
[7] 赵梦瑶, 朱建军. 基于三维点云的机械臂抓取位姿检测方法 [J]. 吉林化工学院学报, 2023, 40(11): 54-60.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed