,"/> Q-learning算法优化的多种LSTM的超短期风电功率预测

Please wait a minute...
吉林化工学院学报, 2024, 41(9): 1-8     https://doi.org/10.16039/j.cnki.cn22-1249.2024.09.001
  本期目录 | 过刊浏览 | 高级检索 |
Q-learning算法优化的多种LSTM的超短期风电功率预测
辛鹏,李超然,张勋,刘培瑞,袁成磊
(吉林化工学院 信息与控制工程学院,吉林 吉林 132022)
Q-learning Algorithm-Optimized Multi-LSTM Ultra-Short-Term Wind Power Forecasting
XIN Peng, LI Chaoran, ZHANG Xun, LI Peirui, YUAN Chenglei

(School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China)

下载:  PDF (3738KB) 
输出:  BibTeX | EndNote (RIS)      
摘要  针对风电功率预测中存在的特征选择困难和单一模型不稳定问题,提出了一种融合Q-learning算法的多种LSTM网络(Q_L-L-C-A)的超短期风电功率预测方法。该方法利用最大信息系数(MIC)对风电数据进行特征筛选,采用变分模态分解(VMD)将风电场功率数据分解为多个频率模态作为额外特征,将筛选和分解后的数据作为模型输入,进行LSTM,CNN-LSTM,Attention-LSTM三种网络模型预测。在此基础上,依据Q-learning算法对三种模型的预测结果进行动态权重分配,以获得更优的组合预测结果。为了验证所提出的Q_L-L-C-A模型的预测效果,以某风电场实测数据为模型输入,与六种模型进行对比实验,实验结果表明:本文所提出的Q_L-L-C-A模型的均方根误差和平均绝对百分误差结果均优于LSTM、CNN-LSTM、Atten-LSTM等模型,Q_L-L-C-A模型在超短期风电功率预测中具有更高的准确性和稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛鹏
李超然
张勋
刘培瑞
袁成磊
关键词:  功率预测   组合模型   Q-learning算法   深度学习   最大信息系数   变分模态分解    
Abstract: To address the challenges of feature selection and the instability of single models in wind power forecasting, a novel ultra-short-term wind power forecasting method that integrates multiple LSTM networks with the Q-learning algorithm (Q_L-L-C-A) is proposed. This method employs the Maximum Information Coefficient (MIC) to filter the features of wind power data and uses Variational Mode Decomposition (VMD) to decompose the wind farm power data into multiple frequency modes as additional features. The filtered and decomposed data are then used as inputs for the LSTM, CNN-LSTM, and Attention-LSTM network models to make predictions. Based on this, the Q-learning algorithm is applied to dynamically allocate weights to the prediction results of the three models to achieve a more optimized combined forecasting outcome. To validate the forecasting performance of the proposed Q_L-L-C-A model, actual measurement data from a wind farm is used as the model input, and comparative experiments are conducted with six other models. The experimental results indicate that the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) of the Q_L-L-C-A model are superior to those of the LSTM, CNN-LSTM, and Attention-LSTM models, demonstrating that the Q_L-L-C-A model exhibits higher accuracy and stability in ultra-short-term wind power forecasting.
Key words:  power prediction    ensemble model    Q-learning algorithm    deep learning    maximal information coefficient   

')" href="#">variational mode decomposition

               出版日期:  2024-09-25      发布日期:  2025-04-03      整期出版日期:  2024-09-25
ZTFLH:  TP183  
引用本文:    
辛鹏, 李超然, 张勋, 刘培瑞, 袁成磊. Q-learning算法优化的多种LSTM的超短期风电功率预测[J]. 吉林化工学院学报, 2024, 41(9): 1-8.
XIN Peng, LI Chaoran, ZHANG Xun, LI Peirui, YUAN Chenglei. Q-learning Algorithm-Optimized Multi-LSTM Ultra-Short-Term Wind Power Forecasting. Journal of Jilin Institute of Chemical Technology, 2024, 41(9): 1-8.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.09.001  或          https://xuebao.jlict.edu.cn/CN/Y2024/V41/I9/1
[1] 臧义超, 农贵山, 张振伟, 林琳. 基于改进空间密度聚类的超短期风电功率预测 [J]. 吉林化工学院学报, 2023, 40(11): 32-37.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed