Please wait a minute...
吉林化工学院学报, 2022, 39(11): 14-19     https://doi.org/10.16039/j.cnki.cn22-1249.2022.11.003
  本期目录 | 过刊浏览 | 高级检索 |
基于机器学习的小鼠基因位点预测方法研究
冯欣1 ,李英瑞1** ,王苹1*** ,董哲原1** ,辛瑞昊2*
1.吉林化工学院 理学院,吉林 吉林 132022;2.吉林化工学院 信息与控制工程学院,吉林 吉林 132022
Research on Prediction Method of Mouse Gene Loci Based on Machine  Learning
FENG Xin 1,LI Yingrui1 ,WANG Ping1, DONG Zheyuan1, XIN Ruihao 2*
下载:  PDF (2713KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

DNA N6甲基腺嘌呤(6mA)是DNA中一种重要的甲基化修饰,参与生物学许多调控过程,在生物过程中起着重要的作用。文章用了公开的小鼠数据集进行研究,首先对小鼠的基因序列(A、T、C、G)通过数学表示符进行信息编码,然后采用卡方检验的方法对编码信息进行特征筛选,筛选出6mA位点相关的特征进行下一步的研究,最后用了七种机器学习算法构建分类模型,并采用五折交叉验证(5-Fold Cross-Validation)对预测结果进行验证,结果显示在使用滑动窗口编码方式下选取前20个最优特征作为训练集样本特征,其随机森林模型对于小鼠6mA位点预测准确率可达到1。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  基因位点  特征选择  机器学习     
Abstract: 

DNA N6-methyladenine (6mA) is an important DNA methylation modification that plays a significant role in many biological regulatory processes. This article use a publicly available mouse dataset to study this modification. Firstly, the mouse gene sequence (A, T, C, G) is encoded using mathematical representation symbols. Then, the encoded information is subjected to feature selection using chi-square testing to select features related to 6mA sites for further study. Seven machine learning algorithms are then used to construct a classification model, and the predictive results are validated using a five-fold cross-validation method. The results showed that selecting the top 20 optimal features as training set sample features using a sliding window encoding method yielded a random forest model that achieved an accuracy of 1 in predicting mouse 6mA sites.

Key words:  gene sequence site    feature selection    machine learning
               出版日期:  2022-11-25      发布日期:  2022-11-25      整期出版日期:  2022-11-25
G40-051  
引用本文:    
冯欣 李英瑞 王苹 董哲原 辛瑞昊. 基于机器学习的小鼠基因位点预测方法研究 [J]. 吉林化工学院学报, 2022, 39(11): 14-19.
FENG Xin , LI Yingrui , WANG Ping, DONG Zheyuan, XIN Ruihao . Research on Prediction Method of Mouse Gene Loci Based on Machine  Learning . Journal of Jilin Institute of Chemical Technology, 2022, 39(11): 14-19.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2022.11.003  或          https://xuebao.jlict.edu.cn/CN/Y2022/V39/I11/14
[1] 姜春雨, 王伟. 基于类别查询的视觉Transformer研究[J]. 吉林化工学院学报, 2024, 41(3): 62-67.
[2] 臧义超, 农贵山, 张振伟, 林琳. 基于改进空间密度聚类的超短期风电功率预测 [J]. 吉林化工学院学报, 2023, 40(11): 32-37.
[3] 辛瑞昊, 董哲原, 苗冯博, 王甜甜, 李英瑞, 冯欣. 基于机器学习的心脏病预测模型研究 [J]. 吉林化工学院学报, 2022, 39(9): 27-32.
[4] 钱有程. 改进的无监督同时正交基聚类特征选择 [J]. 吉林化工学院学报, 2019, 36(7): 80-85.
[5] 钱有程. 基于局部类相似的特征选择方法 [J]. 吉林化工学院学报, 2019, 36(5): 93-96.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed