Please wait a minute...
吉林化工学院学报, 2025, 42(7): 62-68     https://doi.org/10.16039/j.cnki.cn22-1249.2025.07.011
  本期目录 | 过刊浏览 | 高级检索 |
基于低秩矩阵恢复的空压机故障识别算法研究
程龙1**,于天暝2*
1.吉林化工学院 信息与控制工程学院,吉林 吉林 132022;2.东北电力大学 自动化工程学院,吉林 吉林 132012
Research on the Air Compressor Fault Identification Algorithm Based on Low-rank Matrix Recovery
CHENG Long1**,YU tianming2*
1.School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin City 132022,China;2.School of Automation Engineering, Northeast Electric Power University, Jilin City 132022,China
下载:  PDF (2155KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对传统MFCC频谱图在高噪声环境下难以精确提取空压机故障特征的问题,本文提出了一种基于低秩矩阵恢复的空压机故障识别方法。该方法采用低秩背景建模对MFCC频谱图进行降噪处理,有效分离前景与噪声;随后利用MobileNetV2模型进行特征提取,并结合主成分分析(PCA)实现特征降维;最终通过K-means算法对提取的故障特征进行无监督聚类,实现对空压机故障状态的准确分类。实验结果表明,本文方法不仅显著提高了故障识别的准确率(例如,ResNet18在识别任务中达到99.40%的准确率,且训练时间大幅缩短),同时在聚类分析中也获得了更高的CH和SC指数,证明了该方法在噪声环境下的优越性和鲁棒性,为空压机故障诊断与维护提供了一种可靠高效的技术方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程龙
于天暝
关键词:  空压机故障诊断   低秩矩阵恢复   MFCC   K-means聚类    
Abstract: Confronting the challenge of accurately extracting air compressor fault features from traditional MFCC spectrograms in high-noise environments, this paper proposes an air compressor fault identification method based on low-rank matrix recovery. The proposed approach utilizes low-rank background modeling to denoise MFCC spectrograms, effectively separating foreground features from noise. Subsequently, the MobileNetV2 model is employed for feature extraction, while Principal Component Analysis (PCA) is applied to achieve dimensionality reduction. Finally, the extracted fault features are clustered in an unsupervised manner using the K-means algorithm, enabling precise classification of air compressor fault states. Experimental results demonstrate that the proposed method not only significantly enhances recognition accuracy—for instance, ResNet18 achieved a 99.40% accuracy with substantially reduced training time—but also exhibits superior performance in clustering analysis by attaining higher CH and SC indices. These findings underscore the method’s robustness and advantage in noisy environments, offering a reliable and efficient solution for air compressor fault diagnosis and maintenance.
Key words:  Air compressor fault diagnosis    low-rank matrix recovery    MFCC    K-means clustering
               出版日期:  2025-07-25      发布日期:  2025-12-21      整期出版日期:  2025-07-25
ZTFLH:  TP 391  
引用本文:    
程龙, 于天暝. 基于低秩矩阵恢复的空压机故障识别算法研究[J]. 吉林化工学院学报, 2025, 42(7): 62-68.
CHENG Long, YU tianming. Research on the Air Compressor Fault Identification Algorithm Based on Low-rank Matrix Recovery. Journal of Jilin Institute of Chemical Technology, 2025, 42(7): 62-68.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2025.07.011  或          https://xuebao.jlict.edu.cn/CN/Y2025/V42/I7/62
[1] 陈芳, 王吉, 宋剑朝, 候承昊, 吴萌, 陈海鹏. 计及用户满意度的智慧工业园区配能优化策略 [J]. 吉林化工学院学报, 2023, 40(9): 86-94.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed