Please wait a minute...
吉林化工学院学报, 2019, 36(1): 83-86     https://doi.org/10.16039/j.cnki.cn22-1249.2019.01.018
  本期目录 | 过刊浏览 | 高级检索 |
含有接种和非线性传染力的流行病模型的稳定性研究
童姗姗,张振宇
南阳理工学院 数学与统计学院
Study on Stability of Epidemic Model with Vaccination and Nonlinear Infectious Force
TONG Shan-shan, ZHANG Zen-yu
下载:  PDF (279KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

研究一类含有接种和非线性传染力的SEIR流行病模型,通过分析得到了各类平衡点存在的阈值条件。利用Liapunove函数、Lasalle不变集原理、Hurwith判据证明了当基本再生数时,无病平衡点是全局渐近稳定的;当R0>1时,此模型存在两个平衡点,其中无病平衡点是不稳定的,利用Hurwitz判别法证明了地方病平衡点的局部渐近稳定性。最后对模型进行数据模拟,分析了接种对疾病流行的影响,并对文中的主要结论进行了验证。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童姗姗
张振宇
关键词:  非线性传染力  接种  平衡点  全局渐近稳定     
Abstract: 

A class of SEIR infectious disease model with inoculation is studed,  and obtains the threshold condition of the existence of various equilibrium points. By using Liapunove function, Lasalle invariance principle, Hurwith criterion is proved when the basic reproduction number is less than one, the disease-free equilibrium is globally asymptotically stable;when the basic reproduction number is greater than one, this model has two equilibria, the disease-free equilibrium is unstable, discriminant analysis proved the local asymptotic stability of the equilibrium point local disease by Hurwitz, further using the theory of matrix composite track stability and global asymptotic stability of the endemic equilibrium is proved. Finally, the model is simulated, and the effect of vaccination on the epidemic is analyzed, and the main conclusions are verified in this paper.

Key words:  nonlinear infectivity    vaccination    equilibrium point    globally asymptotically stable
               出版日期:  2019-01-25      发布日期:  2019-01-25      整期出版日期:  2019-01-25
ZTFLH:  O175.1  
引用本文:    
童姗姗, 张振宇. 含有接种和非线性传染力的流行病模型的稳定性研究 [J]. 吉林化工学院学报, 2019, 36(1): 83-86.
TONG Shan-shan, ZHANG Zen-yu. Study on Stability of Epidemic Model with Vaccination and Nonlinear Infectious Force . Journal of Jilin Institute of Chemical Technology, 2019, 36(1): 83-86.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2019.01.018  或          http://xuebao.jlict.edu.cn/CN/Y2019/V36/I1/83
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed