Please wait a minute...
吉林化工学院学报, 2024, 41(1): 51-58     https://doi.org/10.16039/j.cnki.cn22-1249.2024.01.009
  本期目录 | 过刊浏览 | 高级检索 |
基于改进YOLOv5s的仓储货物检测算法研究
王 影1,王 晨1**,贾永涛2,刘 麒1*
吉林化工学院 信息与控制工程学院,吉林 吉林 132022
Research on an Improved YOLOv5s-based Algorithm for Warehouse Goods Detection
WANG Ying1 , WANG Chen1 , JIA Yongtao2 , LIU Qi1
School of Information and Control Engineering,Jilin Institute of Chemical Technology, Jilin City 132022,China
下载:  PDF (4735KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对目前仓储货物分类速度慢、易出错、灵活性差等问题,提出了一种改进YOLOv5s的货物检测算法,对仓储货物进行预分类。首先,根据仓储货物的外形特征,将其分为包装箱与包装袋两大类,形成训练数据集;其次,将骨干网络更换为具有更小模型尺寸的MobileNetV3,加快推理;再次,添加SE注意力机制模块,旨在提高模型的检测精度;最后,结合α_CIoU损失函数,增强模型的灵活度。通过实验验证,改进后的算法相较于原始算法在精确率(Precision,P)、平均类别精度(mean Average Precision,mAP)和帧率(Frames Per Second,FPS)三方面分别提升2.1%、0.5%和10.6%,能够高效地完成对仓储货物的预分类工作。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王 影
王 晨
贾永涛
刘 麒
关键词:  YOLOv5s  仓储货物  检测算法  预分类    
Abstract: A modified YOLOv5s detection algorithm has been proposed to address the issues of slow classification speed, error-proneness, and low flexibility in warehouse goods categorization. The algorithm aims to pre-classify warehouse goods. Firstly, based on the external characteristics of warehouse goods, they are divided into two main categories: packaging boxes and packaging bags, forming a training dataset. Secondly, the backbone network is replaced with MobileNetV3, a smaller-sized model, to accelerate inference. Additionally, an SE attention mechanism module is added to enhance the detection accuracy of the model. Finally, the α_CIoU loss function is incorporated to improve the flexibility of the model. Experimental results demonstrate that the improved algorithm achieves a 2.1% increase in precision (P), a 0.5% increase in mean Average Precision (mAP), and a 10.6% increase in Frames Per Second (FPS) compared to the original algorithm. It enables efficient pre-classification of warehouse goods.
Key words:  YOLOv5s    warehouse goods    detection algorithm    pre-classification
               出版日期:  2024-01-25      发布日期:  2024-01-25      整期出版日期:  2024-01-25
ZTFLH:  TP391.41  
  F252  
引用本文:    
王 影, 王 晨, 贾永涛, 刘 麒. 基于改进YOLOv5s的仓储货物检测算法研究[J]. 吉林化工学院学报, 2024, 41(1): 51-58.
WANG Ying , WANG Chen , JIA Yongtao , LIU Qi. Research on an Improved YOLOv5s-based Algorithm for Warehouse Goods Detection. Journal of Jilin Institute of Chemical Technology, 2024, 41(1): 51-58.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.01.009  或          http://xuebao.jlict.edu.cn/CN/Y2024/V41/I1/51
[1] 刘麒, 盛德庆, 孙万龙, 王影.

基于改进YOLOv5s的水果目标检测研究 [J]. 吉林化工学院学报, 2023, 40(7): 34-41.

[2] 张 鋆, 李温温. RRT algorithm; path planning; target offset; variable step size; cubic B-spline curve 基于改进YOLOv5s的玉米田间杂草检测方法 [J]. 吉林化工学院学报, 2023, 40(5): 26-33.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed