Please wait a minute...
吉林化工学院学报, 2023, 40(7): 34-41     https://doi.org/10.16039/j.cnki.cn22-1249.2023.07.007
  本期目录 | 过刊浏览 | 高级检索 |

基于改进YOLOv5s的水果目标检测研究

刘麒1,盛德庆1,孙万龙2,王影1
1.吉林化工学院 信息与控制工程学院,吉林 吉林 132022 2.博世汽车部件(长春)有限公司,吉林 长春 130000
Research on Fruit Target Detection based on Improved YOLOv5s
LIU Qi1  , SHENG Deqing1  , SUN Wanlong2  , WANG Ying1
1. School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin City 132022,China 2. Bosch Automotive Components (Changchun) Co., LTD., Changchun 130000, China
下载:  PDF (4923KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为了准确识别果树上不同的水果目标,解决对果实识别精度不理想等问题, 提出一种基于YOLOv5s的改进算法。首先,在回归框预测损失上,将EIoU损失函数应用到YOLOv5s上,使目标框与锚框的宽度和高度之差达到最小;其次,在主干网络上添加ECA-Net注意力机制,以更好地提取不同果实目标的特征。实验结果表明,YOLOv5s+ECA+EIoU loss的综合性能优势明显,与现有的几种网络算法对比,改进后的算法各项数据均优于其他算法,进而验证了改进的有效性,可以为机器人采摘时的目标检测研究提供必要的技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘麒
盛德庆
孙万龙
王影
关键词:  目标检测  水果  YOLOv5s  ECA-Net  EIoU loss     
Abstract: 

An improved algorithm based on YOLOv5s was proposed in order to accurately identify different fruit targets on fruit trees and solve problems such as unsatisfactory fruit recognition accuracy. Firstly, the EIoU loss function is applied to YOLOv5s to minimize the difference between the width and height of the target frame and the anchor frame. Secondly, the ECA-Net attention mechanism was added to the backbone network to better extract the characteristics of different fruit targets. The experimental results show that YOLOv5s+ECA+EIoU loss has obvious comprehensive performance advantages. Compared with several existing network algorithms, various data of the improved algorithm is superior to other algorithms, thus verifying the effectiveness of the improved algorithm and providing necessary technical support for the research of object detection during robot picking.

Key words:  target detection    fruits    YOLOv5s    ECA-Net    EIoU loss.
               出版日期:  2023-07-25      发布日期:  2023-07-25      整期出版日期:  2023-07-25
ZTFLH:  TP391.41  
引用本文:    
刘麒, 盛德庆, 孙万龙, 王影.

基于改进YOLOv5s的水果目标检测研究 [J]. 吉林化工学院学报, 2023, 40(7): 34-41.
LIU Qi , SHENG Deqing , SUN Wanlong , WANG Ying. Research on Fruit Target Detection based on Improved YOLOv5s . Journal of Jilin Institute of Chemical Technology, 2023, 40(7): 34-41.

链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.07.007  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I7/34
[1] 张 鋆, 李温温. RRT algorithm; path planning; target offset; variable step size; cubic B-spline curve 基于改进YOLOv5s的玉米田间杂草检测方法 [J]. 吉林化工学院学报, 2023, 40(5): 26-33.
[2] 李双远 , 刘向阳. 基于CiteSpace国内外目标检测安全帽的可视化分析 [J]. 吉林化工学院学报, 2022, 39(11): 48-54.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed