Please wait a minute...
吉林化工学院学报, 2019, 36(7): 80-85     https://doi.org/10.16039/j.cnki.cn22-1249.2019.07.018
  本期目录 | 过刊浏览 | 高级检索 |
改进的无监督同时正交基聚类特征选择
钱有程
吉林化工学院 理学院
Improved Unsupervised Simultaneous Orthogonal Basis Clustering Feature Selection
QIAN Youcheng
下载:  PDF (937KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

提出了一种改进的同时正交基聚类特征选择(Improved Unsupervised Simultaneous Orthogonal Basis Clustering Feature Selection,ISOCFS)方法。为有效地对无标签数据进行特征选择,利用目标矩阵来设计正则化的回归模型。目标矩阵通过正交基聚类,获取投影数据点的潜在聚类中心,引导投影矩阵选择判别性的特征。与先前的无监督特征选择方法不同,ISOCFS并不使用数据点预先计算局部结构信息描述目标函数,而是利用目标矩阵进行正交基聚类直接计算潜在的聚类信息。其次,为了减少噪声信息对估计目标矩阵和投影矩阵的干扰,在先前方法基础上,该方法增加了噪声项。另外,该方法利用简单的优化算法即可求解。最后,通过四个常见的微阵列基因表达数据集及五种最近的无监督特征选择方法进行对比实验,证明了ISOCFS方法可以获得更好的聚类效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱有程
关键词:  无监督特征选择  正交基  聚类  线性优化     
Abstract: 

This paper presents an improved Unsupervised Simultaneous Orthogonal Basis Clustering Feature Selection (ISOCFS) method. In order to effectively select features for unlabeled data, a target matrix is used to design a regularized regression model. The target matrix obtains the potential clustering centers of the projected data points by orthogonal base clustering, and guides the projection matrix to select discriminative features. Unlike previous unsupervised feature selection methods, ISOCFS does not use the data points to pre-calculate local structure information to describe the objective function. Instead, it uses the target matrix to perform orthogonal basis clustering to directly calculate the potential clustering information. In addition, in order to reduce the interference of the noise to the estimation target matrix and the projection matrix, the method adds the noise term based on the previous method. Moreover, the method can be solved by using a simple optimization algorithm. Finally, four common microarray gene expression datasets and five recent unsupervised feature selection methods are utilized to demonstrate that the ISOCFS method can obtain better clustering results.

Key words:  unsupervised feature selection    orthogonal basis    clustering    linear programming
               出版日期:  2019-07-25      发布日期:  2019-07-25      整期出版日期:  2019-07-25
O212.1  
  TP18  
引用本文:    
钱有程. 改进的无监督同时正交基聚类特征选择 [J]. 吉林化工学院学报, 2019, 36(7): 80-85.
QIAN Youcheng. Improved Unsupervised Simultaneous Orthogonal Basis Clustering Feature Selection . Journal of Jilin Institute of Chemical Technology, 2019, 36(7): 80-85.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2019.07.018  或          https://xuebao.jlict.edu.cn/CN/Y2019/V36/I7/80
[1] 陈芳, 王吉, 宋剑朝, 候承昊, 吴萌, 陈海鹏. 计及用户满意度的智慧工业园区配能优化策略 [J]. 吉林化工学院学报, 2023, 40(9): 86-94.
[2] 臧义超, 农贵山, 张振伟, 林琳. 基于改进空间密度聚类的超短期风电功率预测 [J]. 吉林化工学院学报, 2023, 40(11): 32-37.
[3] 史彦丽, 金 欢. 基于进化思想的聚类算法及其类簇融合算法 [J]. 吉林化工学院学报, 2022, 39(7): 77-85.
[4] 胡佳利, 王威娜. 基于子类聚类和SAX表示的Shapelet快速发现算法 [J]. 吉林化工学院学报, 2022, 39(11): 20-24.
[5] 周燕茹. 基于模糊数学的高维稀疏数据聚类统计方法设计 [J]. 吉林化工学院学报, 2021, 38(9): 107-111.
[6] 张飞. 基于试探的未知类别聚类的识别算法应用研究 [J]. 吉林化工学院学报, 2021, 38(5): 23-26.
[7] 白雪. 基于网络学习行为聚类分析的在线课堂优化策略研究 [J]. 吉林化工学院学报, 2020, 37(8): 44-48.
[8] 塔程程. 聚类分析方法在高校图书馆中的应用 [J]. 吉林化工学院学报, 2019, 36(2): 79-82.
[9] 孙王杰, 胡娟强, 吴岩岩. 高等数学分级教学的实证研究1 [J]. 吉林化工学院学报, 2019, 36(12): 23-28.
[10] 王威娜. 基于模糊聚类和RFM模型的商场会员画像描绘方法 [J]. 吉林化工学院学报, 2019, 36(11): 71-73.
[11] 刘丽波. 基于R软件的聚类分析方法在地区人口文化程度综合评价中的应用[J]. 吉林化工学院学报, 2018, 35(1): 63-66.
[1] WANG Ya-hong, JIA Ying-chao. Optimization for Soxhlet Extraction of Total Flavonoids from Eggplant Root by Using Response Surface Methodology[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 1 -6 .
[2] PAN Hong-wei, ZHOU Hong-li. Research Progress on Extraction Technology and Component Analysis of Volatile Flavor Compounds in Plants[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 7 -10 .
[3] YAN Zhen-han, CHEN Qing. Analysis of Pressure Sealing Technology Research[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 11 -14 .
[4] SUN Xiao-feng, YU Wen-xin, ZHU Ming-wei, JIE Meng, JIANG De-lon. Research on the Piezoelectric Pump Application in Continuous Ink Supply System of the Inkjet Printer[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 15 -18 .
[5] LV Xue-fei, LIU Shuang, GAN Shu-kun. New Technology of Compound Rare Earth Salt Conversion on Copper Alloy Surface[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 19 -22 .
[6] WU Dong-jun, ZHANG Yu-feng, ZHOU Rui-jie, LIU Hong-liang, ZI Tian-cheng. Research on the Design of Coastal Beach Cleaning Vehicles[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 45 -47 .
[7] JIANG Di, QIN Ti-zhi, HAN Ming-xuan, ZHANG Zhi-hui, ZHANG Yu. Catalytic Performance of Sulfonic Acid Resins on the Transalkylation of Dinonylphenol with Phenol[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 48 -51 .
[8] SU Ji-yi, QU Ming-lei, MA Hong-tu. Preparation and Study of Nano-crystal Doped with Rare Earth Ions[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 52 -57 .
[9] XU You-zhuan, ZHOU Hou-qing. The Lower Bounds of Energy for Some Circulant Graph[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 67 -72 .
[10] SUN Jing-yang. Selection and Application of DC LED Driver[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 73 -77 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed