Please wait a minute...
吉林化工学院学报, 2025, 42(5): 59-66     https://doi.org/10.16039/j.cnki.cn22-1249.2025.05.010
  本期目录 | 过刊浏览 | 高级检索 |
基于VMD-WOA-ATLSTM的短期风电功率预测
辛鹏1*,郭玉强1**,李键2,李超然1,刘培瑞1,杨建1**
吉林化工学院 信息与控制工程学院,吉林 吉林 132022;吉林石化公司 吉林 吉林 132022
Prediction of Short-Term Wind Power Based on VMD-WOA-ATLSTM
XIN Peng, GUO Yu-qiang, LI Chao-ran, LI Pei-rui, YANG Jian
School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
下载:  PDF (1655KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对电力系统中风力发电固有的波动性和功率预测面临高频噪声的问题,提出一种基于VMD-WOA-ATLSTM的短期风电功率预测模型。模型运用皮尔逊相关系数法获取高相关度数据,确定风电功率的关键影响特征,并利用变分模态分解(VMD)实现数据的分解和重构,以突出与功率相关的主要特征和降低噪声干扰,进一步建立基于长短期记忆神经网络与注意力机制结合的ATLSTM模型,运用鲸鱼优化算法(WOA)对ATLSTM网络参数进行全局寻优,最后将各模态分量预测结果叠加以提升模型整体预测性能。实验结果表明VMD-WOA-ATLSTM模型在功率预测方面比LSTM、LSTM-Attention、VMD-ATLSTM、WOA-ATLSTM预测模型具有更好的预测精度与鲁棒性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  变分模态分解    鲸鱼优化算法    注意力机制    长短期记忆神经网络    功率预测    
Abstract: Aiming at the inherent volatility of wind power generation in power system and the problem of high frequency noise in power prediction. A short-term wind power prediction model based on VMD-WOA-ATLSTM is proposed. The Pearson correlation coefficient method is used in the model to obtain highly relevant data and determine the key impact characteristics of wind power. The variational mode decomposition (VMD) is used to decompose and reconstruct the data to highlight the main features related to power and reduce noise interference. Further the ATLSTM model combining long-term and short-term memory neural network and attention mechanism is built. The whale optimization algorithm (WOA) is used to globally optimize the parameters of ATLSTM network. Finally, the prediction results of each modal component are superimposed to improve the overall prediction performance of the model. The experimental results show that VMD-WOA-ATLSTM model has better prediction accuracy and robustness than LSTM, LSTM-Attention, VMD-ATLSTM and WOA-ATLSTM models in power prediction.
Key words:  variational mode decomposition      whale optimization algorithm      attention mechanism      long and short-term memory neural networks       power prediction 
               出版日期:  2025-05-25      发布日期:  2025-12-20      整期出版日期:  2025-05-25
ZTFLH:  TM615  
引用本文:    
辛鹏, 郭玉强, 李键, 李超然, 刘培瑞, 杨建. 基于VMD-WOA-ATLSTM的短期风电功率预测[J]. 吉林化工学院学报, 2025, 42(5): 59-66.
XIN Peng, GUO Yu-qiang, LI Chao-ran, LI Pei-rui, YANG Jian. Prediction of Short-Term Wind Power Based on VMD-WOA-ATLSTM. Journal of Jilin Institute of Chemical Technology, 2025, 42(5): 59-66.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2025.05.010  或          https://xuebao.jlict.edu.cn/CN/Y2025/V42/I5/59
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed