Please wait a minute...
吉林化工学院学报, 2024, 41(7): 18-25     https://doi.org/10.16039/j.cnki.cn22-1249.2024.07.004
  本期目录 | 过刊浏览 | 高级检索 |
MSP-YOLO:用于识别水果的改进算法

余鹏泽1 ,刘兴德2* ,谢延楠1 ,任洛莹1 ,孔志成1 ,胡文松1

1.吉林化工学院 信息与控制工程学院,吉林 吉林 1320222.吉林化工学院 机电工程学院,吉林 吉林  132022

MSP-YOLO: An Improved Algorithm for Identifying Fruits

YU Pengze1 ,LIU Xingde2 ,XIE Yannan1 ,REN Luoying1 ,KONG Zhicheng1 ,HU Wensong1

School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City 132022,China; School of Mechanical and Electrical Engineering,Jilin Institute of Chemical Technology, Jilin City 132022,China

下载:  PDF (8703KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 目标检测在计算机视觉中占有重要的地位,并逐渐成为许多应用的技术基础。将目标检测运用在水果识别中可以提高水果采摘的效率,由于对水果识别的背景复杂性、模型相似性大、纹理干扰严重、水果局部遮挡等问题,且基于传统方法的水果目标识别效率比较低。为了解决这一问题,本文提出了一种基于YOLOv5的水果检测分类算法MSP-YOLO。首先,将YOLOv5的主干网络换成另外一种更加轻量化的主干网络MobileNetV3,在减小模型的大小同时也能够提高对水果的检测速率;其次,本文将引入SE注意力机制到改进网络中,在YOLOv5基础模型的颈部中间层网络中加入SE注意力机制。SE注意力机制的优点在于可以帮助模型对通道信息最多的特征通道给予更多的注意力,来达到抑制那些对整体不太重要的通道特征,从而提升准确率;最后,通过将损失函数CIoU更改为MPDIoU简化了边界框之间的相似性比较,能更好的优化数据集,提高水果检测的识别精度。实验结果表明,MSP-YOLO在数据集上的精度达到92.7% mAP,比未改进的YOLOv5提高了3.3%,改进的算法在检测精度和速率方面优于目前主要的几种目标检测模型Faster R-CNN、SSD、YOLOv7-tiny、YOLOv3-tiny、YOLOv4以及原模型YOLOv5。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余鹏泽
刘兴德
谢延楠
任洛莹
孔志成
胡文松
关键词:  注意力机制  YOLOv5  水果检测  MobileNetV3  损失函数    
Abstract: 

Object detection occupies an important place in computer vision and is gradually becoming the technical basis for many applications.The application of object detection in fruit recognition can improve the efficiency of fruit picking, but the efficiency of fruit object recognition based on traditional methods is relatively low due to the problems of background complexity,large model similarity, serious texture interference, and local occlusion of fruits. In order to solve this problem,this paper proposes a fruit detection and classification algorithm MSP-YOLO based on YOLOv5. Firstly,the backbone network of YOLOv5 was replaced with another more lightweight backbone network, MobileNetV3, which could reduce the size of the model and improve the detection rate of fruits. Secondly, this paper introduces the SE attention mechanism into the improved network, and adds the SE attention mechanism to the neck middle layer network of the YOLOv5 base model. The advantage of the SE attention mechanism is that it can help the model pay more attention to the feature channels with the most channel information, so as to suppress those channel features that are not important to the whole, so as to improve the accuracy. Finally, by changing the loss function CIoU to MPDIoU, the similarity comparison between the bounding boxes is simplified, which can better optimize the dataset and improve the recognition accuracy of fruit detection. Experimental results show that the accuracy of MSP-YOLO on the dataset reaches 92.7% mAP, which is 3.3% higher than that of the unimproved YOLOv5, and the improved algorithm is superior to the main object detection models Faster R-CNN, SSD, YOLOv7-tiny, YOLOv3-tiny, YOLOv4 and the original model YOLOv5 in terms of detection accuracy and rate.

Key words:  attention mechanism    YOLOv5    fruit detection    MobileNetV3    loss function
               出版日期:  2024-07-25      发布日期:  2024-07-25      整期出版日期:  2024-07-25
TP391.4  
引用本文:    
余鹏泽 , 刘兴德 , 谢延楠 , 任洛莹 , 孔志成 , 胡文松. MSP-YOLO:用于识别水果的改进算法[J]. 吉林化工学院学报, 2024, 41(7): 18-25.
YU Pengze , LIU Xingde , XIE Yannan , REN Luoying , KONG Zhicheng , HU Wensong.

MSP-YOLO: An Improved Algorithm for Identifying Fruits . Journal of Jilin Institute of Chemical Technology, 2024, 41(7): 18-25.

链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.07.004  或          https://xuebao.jlict.edu.cn/CN/Y2024/V41/I7/18
[1] 王影, 孙可欣, 刘振刚, 高康盛, 刘麒. 基于改进YOLOv5的仿生机器鱼目标检测算法研究[J]. 吉林化工学院学报, 2024, 41(5): 22-29.
[2] 崔世磊, 孙明革, 高聪, 郭晓龙, 李迎岗. 基于YOLOv7的番茄检测算法优化与实现[J]. 吉林化工学院学报, 2024, 41(3): 25-30.
[3] 王 影, 王 晨, 贾永涛, 刘 麒. 基于改进YOLOv5s的仓储货物检测算法研究[J]. 吉林化工学院学报, 2024, 41(1): 51-58.
[4] 董如意, 崔冉. 基于YOLOV5L的交通信号灯识别研究 [J]. 吉林化工学院学报, 2023, 40(9): 37-42.
[5] 刘麒, 盛德庆, 孙万龙, 王影.

基于改进YOLOv5s的水果目标检测研究 [J]. 吉林化工学院学报, 2023, 40(7): 34-41.

[6] 张 鋆, 李温温. RRT algorithm; path planning; target offset; variable step size; cubic B-spline curve 基于改进YOLOv5s的玉米田间杂草检测方法 [J]. 吉林化工学院学报, 2023, 40(5): 26-33.
[7] 赵梦瑶, 朱建军. 基于三维点云的机械臂抓取位姿检测方法 [J]. 吉林化工学院学报, 2023, 40(11): 54-60.
[8] 任洛莹 , 刘兴德 , 谢延楠 , 胡文松 , 余鹏泽, 孔志成. CGB-YOLO:用于检测钢铁表面缺陷的YOLO算法 [J]. 吉林化工学院学报, 2023, 40(11): 38-44.
[9] 刘麒, 尹港 , 王影, 叶泽 . 基于深度学习的水面漂浮物识别算法设计 [J]. 吉林化工学院学报, 2022, 39(7): 28-33.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed