Please wait a minute...
吉林化工学院学报, 2024, 41(5): 50-53     https://doi.org/10.16039/j.cnki.cn22-1249.2024.05.009
  本期目录 | 过刊浏览 | 高级检索 |
基于改进的Faster R-CNN算法建筑领域裂缝检测研究
李双远  , 刘向阳2
1. 吉林化工学院 信息中心,吉林 吉林132022; 2.吉林化工学院 信息与控制工程学院,吉林 吉林132022
Crack Detection in Construction Field Based on Improved Faster R-CNN Algorithm
LI Shuangyuan1, LIU Xiangyang2
1.Information Center,Jilin Institute of Chemical Technology,Jilin City 132022,China;2.School of Information and Control Engineering, Jilin Institute of Chemical Technology,Jilin City 132022,China
下载:  PDF (782KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在人工智能技术的驱动下,国家建筑设施智能化也在迅猛发展,墙体裂缝的检测问题也受到人们越来越多的关注。针对传统人工对建筑墙体裂缝检测精度低的问题,本文提出一种改进的Faster R-CNN算法进行墙面裂缝检测。首先,自制实验数据集并进行数据增强,之后使用的 ResNet50 残差网络来替代 VGG16 网络模块进行特征提取,接着加入了FPN特征金字塔模块,提高模型多尺度检测能力,最后使用EIoU损失函数提高模型检测精度。通过实验表明,本文改进后的算法检测能力大大提升,mAP值达到了93.5%,能够满足高精度检测的需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李双远
刘向阳
关键词:  Faster R-CNN  FPN  目标检测  墙体裂缝  EIoU    
Abstract: Driven by artificial intelligence technology, the intelligentization of national building facilities is also developing rapidly, and the problem of wall crack detection is also receiving more and more attention. Aiming at the problem of low accuracy of traditional manual detection of building wall cracks, this paper proposes an improved Faster R-CNN algorithm for wall crack detection. Firstly, the experimental dataset is made and enhanced, then the ResNet50 residual network is used to replace the VGG16 network module for feature extraction, then the FPN feature pyramid module is added to improve the multi-scale detection ability of the model, and finally, the EIoU loss function is used to improve the accuracy of the model detection. The experiments show that the improved algorithm in this paper has greatly improved the detection ability, and the mAP value reaches 93.5%, which can meet the demand of high-precision detection.
Key words:  Faster R-CNN    FPN    Object detection    Wall crack    EIoU
               出版日期:  2024-05-25      发布日期:  2024-05-25      整期出版日期:  2024-05-25
ZTFLH:  TP391.4  
引用本文:    
李双远, 刘向阳. 基于改进的Faster R-CNN算法建筑领域裂缝检测研究[J]. 吉林化工学院学报, 2024, 41(5): 50-53.
LI Shuangyuan, LIU Xiangyang. Crack Detection in Construction Field Based on Improved Faster R-CNN Algorithm. Journal of Jilin Institute of Chemical Technology, 2024, 41(5): 50-53.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.05.009  或          http://xuebao.jlict.edu.cn/CN/Y2024/V41/I5/50
[1] 王影, 孙可欣, 刘振刚, 高康盛, 刘麒. 基于改进YOLOv5的仿生机器鱼目标检测算法研究[J]. 吉林化工学院学报, 2024, 41(5): 22-29.
[2] 董如意, 崔冉. 基于YOLOV5L的交通信号灯识别研究 [J]. 吉林化工学院学报, 2023, 40(9): 37-42.
[3] 刘麒, 盛德庆, 孙万龙, 王影.

基于改进YOLOv5s的水果目标检测研究 [J]. 吉林化工学院学报, 2023, 40(7): 34-41.

[4] 李双远 , 刘向阳. 基于CiteSpace国内外目标检测安全帽的可视化分析 [J]. 吉林化工学院学报, 2022, 39(11): 48-54.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed