Please wait a minute...
吉林化工学院学报, 2024, 41(4): 60-65     https://doi.org/10.16039/j.cnki.cn22-1249.2024.04.013
  本期目录 | 过刊浏览 | 高级检索 |
基于数据驱动的高职精准混合教学模式构建与实例分析
王威娜
吉林化工学院 理学院,吉林 吉林 132022
Construction and Empirical Analysis of Data-Driven Precision Blended Instruction Model
WANG Weina
School of Science, Jilin Institute of Chemical Technology, Jilin 132022, China
下载:  PDF (1319KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 深化大数据技术在高职教育领域的融合与发展,以推动高职教育改革和高质量教育为核心引擎,以学生学习全过程数据为依托,以精准教学、混合式教学、数据驱动相关理论为基础,构建基于数据驱动的高职精准混合教学模式。该教学模式融合“线上”与“线下”的教学优势,从教学目标、课前准备、教学过程和教学评价与预测四个环节出发,聚焦于精准混合教学的操作框架与实施路径,实现智能化、个性化、精细化、科学化的精准混合式教学。在高职“高等数学”课程的实践验证中,从教学效果、学习能力、学习成绩等多个维度将混合式教学与传统教学方式比对,表明精准混合式教学模式的有效性和优越性,全方面促进高职教学的高质量发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王威娜
关键词:  精准教学  混合式教学  教学模式  数据驱动  实例分析    
Abstract: To deepen the integration and development of big data technology in the field of higher education, the research takes the promotion of the reform of higher education and high-quality education as the core engine, and takes advantage of the data of the whole process of students' learning and the theory of precision teaching, hybrid teaching and data-driven theories. Based on the above considerations, a data-driven precision blended learning model is constructed. The model integrates the advantages of "online" and "offline" teaching. Starting from the four parts: teaching objectives, pre-class preparation, teaching process, and teaching evaluation and prediction, it focuses on the operational framework and implementation path of precise blended learning to achieve intelligent, personalized, refined and scientific blended learning. In the practical verification of the "Advanced Mathematics" course in higher vocational education, comparing blended learning with traditional teaching methods from multiple dimensions such as teaching effectiveness, learning ability, and academic performance, it is shown that the effectiveness and superiority of precise blended learning mode can promote the high-quality development of higher vocational education comprehensively.
Key words:  precision instruction    blended learning    teaching model    data-driven    empirical analysis
               出版日期:  2024-04-25      发布日期:  2024-04-25      整期出版日期:  2024-04-25
ZTFLH:  G712  
引用本文:    
王威娜. 基于数据驱动的高职精准混合教学模式构建与实例分析[J]. 吉林化工学院学报, 2024, 41(4): 60-65.
WANG Weina. Construction and Empirical Analysis of Data-Driven Precision Blended Instruction Model. Journal of Jilin Institute of Chemical Technology, 2024, 41(4): 60-65.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.04.013  或          http://xuebao.jlict.edu.cn/CN/Y2024/V41/I4/60
[1] 付正帅, 李晓雨. “一主六双”战略下吉林省地方高校外语专业应用型教学模式构建研究[J]. 吉林化工学院学报, 2024, 41(4): 13-17.
[2] 甘树坤, 杨凯凯, 吕雪飞. “新工科”背景下机械类虚拟仿真实验教学平台的建设[J]. 吉林化工学院学报, 2024, 41(2): 10-13.
[3] 张劲英, 史凤波. “1+X”证书制度融入高职制造类专业教学改革研究 [J]. 吉林化工学院学报, 2023, 40(4): 60-64.
[4] 徐娜. 《专业外语阅读》课程线上线下混合教学模式探究 [J]. 吉林化工学院学报, 2023, 40(4): 17-19.
[5] 崔晓梅, 许洁, 茹静. 疫情下《复变函数与积分变换》课程弹性教学模式探索 [J]. 吉林化工学院学报, 2023, 40(4): 10-13.
[6] 徐 娜. 疫情防控常态化形势下高校课程教学改革研究——以《专业外语阅读》为例 [J]. 吉林化工学院学报, 2023, 40(2): 9-11.
[7] 史彦丽. 基于信息化的高职数学课程混合教学模式的建构与实施策略 [J]. 吉林化工学院学报, 2023, 40(2): 63-67.
[8] 李佳. 新工科背景下地方高校构建《大学计算机》一流课程的有效路径 [J]. 吉林化工学院学报, 2023, 40(2): 17-21.
[9] 邢雪, 郑力军. 面向新工科的计算机专业实践类课程教学模式研究 [J]. 吉林化工学院学报, 2023, 40(12): 23-28.
[10] 张珊, 曲波, 刘薇. 新工科背景下高等数学课程的创新教学研究 [J]. 吉林化工学院学报, 2023, 40(10): 15-18.
[11] 解玉鹏, 刘文彦, 吉丽. 大学物理线上线下混合式教学探索 [J]. 吉林化工学院学报, 2023, 40(10): 19-22.
[12] 刘梦竹, 董薇, 姚姗姗, 陈杰, 蒋巍, 王永鹏. 课程思政全方位融入“高分子物理”课程的策略研究 [J]. 吉林化工学院学报, 2023, 40(10): 1-5.
[13] 魏白光, 李涛, 于军. 诌议高等职业院校课程考核评价体系改革与研究 [J]. 吉林化工学院学报, 2023, 40(10): 68-71.
[14] 崔杨, 刘彦辰. 以学生团队为中心的工业工程专业课程应用型教学模式探索与实践 [J]. 吉林化工学院学报, 2022, 39(8): 31-33.
[15] 尚任. 《单片机原理及应用》智慧课堂的实践探索——以“AT89S51单片机的中断系统”讲解为例[J]. 吉林化工学院学报, 2022, 39(6): 71-76.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed