Please wait a minute...
吉林化工学院学报, 2024, 41(3): 37-41     https://doi.org/10.16039/j.cnki.cn22-1249.2024.03.007
  本期目录 | 过刊浏览 | 高级检索 |
基于特征融合的空压机故障诊断算法研究
王辅民 **, 周红娟2,冯国亮3,邢雪1*
吉林化工学院 信息与控制工程学院,吉林 吉林 132022
Research on Fault Diagnosis Algorithm of Air Compressor Based on Feature Fusion 
WANG Fumin1**,FENG Guoliang2,XING Xue1*
School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin City 132022,China
下载:  PDF (1544KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 空气压缩机作为工业生产的重要设备,其运行状态直接影响到生产的成败。然而,传统的故障诊断方法不易获得准确的故障特征,不同工作条件之间的特征分布差异的度量不是充分的域自适应,难以达到较好的识别精度,并且空气压缩机运行时产生一定的背景噪声,产生一定干扰,影响故障识别准确性。为了克服上述限制:提出了一种基于特征融合的空气压缩机故障诊断方法。首先,分别提取空气压缩机的梅尔倒谱系数特征和小波变换特征。然后,在决策层对置信度分数和预测边界框进行晚期融合,并根据评估指标选择最佳网络模型完成分类。对比实验结果表明,该特征融合方法显著提高了故障识别的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:   特征融合  声纹识别  故障识别  特征提取  空气压缩机    
Abstract: As a critical piece of industrial production equipment, the operational status of an air compressor directly affects the success of production. However, traditional fault diagnosis methods struggle to accurately obtain fault characteristics. The feature distribution differences between different working conditions are not sufficiently measured by domain adaptation, making it difficult to achieve high recognition accuracy. Additionally, background noise generated during the operation of air compressors introduces interference that impacts fault identification accuracy. To overcome these limitations, a feature fusion-based fault diagnosis method for air compressors is proposed. Firstly, Mel-frequency cepstral coefficients (MFCC) features and wavelet transform features of the air compressor are extracted separately. Then, at the decision layer, confidence scores and predicted bounding boxes are fused late in the process, and the best network model is selected based on evaluation metrics to complete the classification. Comparative experimental results show that this feature fusion method significantly improves fault identification accuracy.
Key words:  feature fusion    voiceprint recognition    fault identification    feature extraction    air compressor
               出版日期:  2024-03-25      发布日期:  2024-03-25      整期出版日期:  2024-03-25
ZTFLH:     
  TP391  
引用本文:    
王辅民, 周红娟, 冯国亮, 邢雪. 基于特征融合的空压机故障诊断算法研究[J]. 吉林化工学院学报, 2024, 41(3): 37-41.
WANG Fumin, FENG Guoliang, XING Xue. Research on Fault Diagnosis Algorithm of Air Compressor Based on Feature Fusion . Journal of Jilin Institute of Chemical Technology, 2024, 41(3): 37-41.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.03.007  或          http://xuebao.jlict.edu.cn/CN/Y2024/V41/I3/37
[1] 曾娜. 电厂汽轮机高中压转子振动突变故障识别研究 [J]. 吉林化工学院学报, 2022, 39(7): 94-99.
[2] 邹亚囡, 史雪莹, 吴青云. 对气体传感器数据集的处理分析方法 [J]. 吉林化工学院学报, 2022, 39(11): 1-5.
[3] 张飞. 基于试探的未知类别聚类的识别算法应用研究 [J]. 吉林化工学院学报, 2021, 38(5): 23-26.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed