Please wait a minute...
吉林化工学院学报, 2023, 40(11): 32-37     https://doi.org/10.16039/j.cnki.cn22-1249.2023.11.006
  本期目录 | 过刊浏览 | 高级检索 |
基于改进空间密度聚类的超短期风电功率预测
臧义超,农贵山,张振伟,林琳
吉林化工学院 信息与控制工程学院,吉林 吉林 132022
Ultra-short-term Wind Power Prediction based on Improved Spatial Density Clustering
ZANG Yichao,NONG Guishan,ZHANG Zhenwei,LIN Lin
School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
下载:  PDF (1320KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

由于风能的波动性容易导致训练样本多样性和历史数据的缺失,会对风电功率的预测产生较大影响。针对这一问题,提出了一种基于天气特征选择和空间密度聚类的风机集群超短期风电功率预测方法。首先,采用基于完整的核fisher判别的特征选择方法,将NWP信息进行主成分分析,并提取各风机关键的风速特征。之后,基于以上特征采用一种基于空间密度的改进聚类方法对风电场中的各风机进行集群划分。最后,采用GRU-D方法分别对各风电机集群进行功率预测后求和,得到预测功率。采用西班牙某地区的陆上风电产出历史数据进行实验,结果表明,本文方法相比基于传统DBSCAN和K-means聚类方法的均方根误差预测精度分别提升了0.25%和2.02%,相比无法处理缺失值的GRU,模型的均方根误差预测精度提升了0.82%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
臧义超
农贵山
张振伟
林琳
关键词:  超短期风电功率预测  特征选择  空间密度聚类  集群划分  GRU-D     
Abstract: 

Due to the volatility of wind energy tends to lead to training sample diversity and the lack of historical data, both of which greatly impact wind power prediction. In response to this problem,  we propose an ultra-short-term wind power prediction method for wind power clusters based on weather feature selection and spatial density clustering. First, a feature selection method based on complete kernel fisher discrimination is used to subject the NWP(Numerical Weather Prediction) information to principal component analysis and extract the most critical wind speed features of each wind turbine. After that, an improved clustering method based on spatial density is used to classify the clusters of each wind turbine in the wind farm based on the above features. Finally, the GRU-D(Gated Recurrent Unit with Decay) method is used to predict the power of each wind turbine cluster and sum it to get the predicted power. The results using historical data of onshore wind power output in a region of Spain show that the root-mean-square error prediction accuracy of the proposed method improves by 0.25% and 2.02% compared to the prediction methods based on traditional DBSCAN(Density-Based Spatial Clustering of Applications with Noise) and K-means clustering methods, and the root-mean-square error prediction accuracy of the model improves by 0.82% compared to the GRU(Gated Recurrent Unit) that cannot handle missing values.

Key words:  ultra-short-term wind power forecasting    feature selection    dbscan clustering    cluster partitioning    GRU-D
               出版日期:  2023-11-25      发布日期:  2023-11-25      整期出版日期:  2023-11-25
ZTFLH:  TM614  
引用本文:    
臧义超, 农贵山, 张振伟, 林琳. 基于改进空间密度聚类的超短期风电功率预测 [J]. 吉林化工学院学报, 2023, 40(11): 32-37.
ZANG Yichao, NONG Guishan, ZHANG Zhenwei, LIN Lin. Ultra-short-term Wind Power Prediction based on Improved Spatial Density Clustering . Journal of Jilin Institute of Chemical Technology, 2023, 40(11): 32-37.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.11.006  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I11/32
[1] 冯欣 李英瑞 王苹 董哲原 辛瑞昊. 基于机器学习的小鼠基因位点预测方法研究 [J]. 吉林化工学院学报, 2022, 39(11): 14-19.
[2] 钱有程. 改进的无监督同时正交基聚类特征选择 [J]. 吉林化工学院学报, 2019, 36(7): 80-85.
[3] 钱有程. 基于局部类相似的特征选择方法 [J]. 吉林化工学院学报, 2019, 36(5): 93-96.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed