Please wait a minute...
吉林化工学院学报, 2023, 40(9): 43-47     https://doi.org/10.16039/j.cnki.cn22-1249.2023.09.008
  本期目录 | 过刊浏览 | 高级检索 |
基于卷积神经网络的车刀磨损研究
陈娜1,孔繁星2*,王彦旭3,何腾飞1,李胜男1
1.吉林化工学院 信息与控制工程学院,吉林 吉林,132022; 2.吉林化工学院 机电工程学院,吉林 吉林,132022; 3.吉林化工学院 先进制造技术部,吉林 吉林,132022
Research on Turning Tool Wear based on Convolutional Neural Network
CHEN Na1 ,KONG Fanxing2*, WANG Yanxu3, HE Tengfei1, LI Shengnan1
1. School of Information and Control Engineering, Jilin Institute of Chemical Technology , Jilin City 132022, China 2. School of Mechanical and Electrical Engineering ,Jilin Institute of Chemical Technology , Jilin City 132022, China 3. Department of Advanced Manufacturing Technology ,Jilin Institute of Chemical Technology , Jilin City 132022, China
下载:  PDF (2118KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

车削加工过程中,刀具磨损是影响加工效率最重要的一个因素,在工件表面发生过度损坏之前,需要对刀具的磨损情况进行识别和及时更新,实现工件的高质量生产加工。提出了一种基于深度学习的刀具磨损状态识别方法,通过显微镜记录不同磨损阶段的车削刀具图像,并利用卷积神经网络提取输入图像不同磨损状态特征,对该模型选择合适的训练参数,实现切削刀具磨损的状态分类。实验表明,在对车刀的不同磨损状态进行分类时,准确率可达到94.0%,可用于低成本识别车削加工过程中的刀具磨损状态。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈娜
孔繁星
王彦旭
何腾飞
李胜男
关键词:  卷积神经网络  车刀磨损  磨损分类     
Abstract: 

In the process of turning processing, tool wear is one of the most important factors affecting machining efficiency, before excessive damage to the work piece surface, it is necessary to identify and update the wear of the tool in time to achieve high-quality production and processing of the work piece. In this paper, a tool wear state recognition method based on deep learning is proposed, which records the turning tool images at different wear stages through a microscope, and uses the convolutional neural network to extract the different wear state features of the input images, and selects appropriate training parameters for the model to realize the state classification of cutting tool wear. Experiments show that the accuracy rate can reach 94.0% when classifying different wear states of turning tools, which can be used to identify tool wear states in the turning process at low cost.

Key words:  convolutional neural networks    turning tool wear    wear classification
               出版日期:  2023-09-25      发布日期:  2023-09-25      整期出版日期:  2023-09-25
ZTFLH:  TP183  
  TP39  
引用本文:    
陈娜, 孔繁星, 王彦旭, 何腾飞, 李胜男. 基于卷积神经网络的车刀磨损研究 [J]. 吉林化工学院学报, 2023, 40(9): 43-47.
CHEN Na , KONG Fanxing, WANG Yanxu, HE Tengfei, LI Shengnan. Research on Turning Tool Wear based on Convolutional Neural Network . Journal of Jilin Institute of Chemical Technology, 2023, 40(9): 43-47.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.09.008  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I9/43
[1] 辛瑞昊 , 王甜甜 , 苗冯博 , 董哲原 , 马占森 , 冯欣. 基于深度学习的机械轴承故障智能诊断 [J]. 吉林化工学院学报, 2022, 39(11): 25-29.
[2] 吴青云, 邹亚囡, 史雪莹. 基于卷积神经网络的电子鼻分类识别 [J]. 吉林化工学院学报, 2022, 39(11): 38-41.
[3] 钟楚轶, 朱建军. 人体活动识别数据集的数据处理方法 [J]. 吉林化工学院学报, 2020, 37(3): 81-84.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed