Please wait a minute...
吉林化工学院学报, 2023, 40(3): 62-67     https://doi.org/10.16039/j.cnki.cn22-1249.2023.03.013
  本期目录 | 过刊浏览 | 高级检索 |
数字化背景下基于深度学习的生成设计在视觉识别平台中的应用研究
范家墁
福州外语外贸学院 艺术与设计学院,福建 福州 350202
Research on the Application of Generative Design based on Deep Learning in Visual Recognition Platform under Digital Background
FAN Jiamian
下载:  PDF (3086KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在目前信息爆炸的时代,如何实现先进技术与艺术的高效连结,将视觉设计去中心化,得到了众多学者的广泛关注。研究以生成技术为设计流程的延展进行人机联合协作的方式,将卷积神经网络与生成对抗网络模型进行结合,同时引入条件的方式,在生成器结构的每层连接条件信息,利用谱归一化与组归一化相互配合的方式优化上述模型,最终构建条件深度卷积生成对抗网络模型(Conditional Depth Convolution to Generate Antagonism Network,CDCGAN)。研究结果表明,CDCGAN模型的平均准确率为97.28%,并且其在智能化视觉识别设计平台中的延展能力与学习能力非常优秀。综上所述,CDCGAN模型具有较好的性能与准确率,并能很好地应用于智能化视觉识别设计平台。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范家墁
关键词:  CNN  GAN  生成设计  视觉识别  谱归一化     
Abstract: 

In the current era of information explosion, how to realize the efficient connection between advanced technology and art, and how to decentralize visual design, has been widely concerned by many scholars. Research a method of human-machine collaboration using generation technology as an extension of the design process, combining convolutional neural networks with generating adversarial network models, and introducing conditional methods to connect conditional information at each layer of the generator structure. Optimize the above model by using spectral normalization and group normalization in conjunction, Finally, a conditional depth convolution to generate an adversarial network model (CDCGAN) is constructed. The research results show that the average accuracy of the CDCGAN model is 97.28%, and its extensibility and learning ability in the intelligent visual recognition design platform are excellent. In conclusion, CDCGAN model has good performance and accuracy, and can be well applied to intelligent visual recognition design platform.

Key words:  CNN    GAN    generate design    visua    recognition    spectra    norma    ization
               出版日期:  2023-03-25      发布日期:  2023-03-25      整期出版日期:  2023-03-25
ZTFLH:  TP391  
引用本文:    
范家墁. 数字化背景下基于深度学习的生成设计在视觉识别平台中的应用研究 [J]. 吉林化工学院学报, 2023, 40(3): 62-67.
FAN Jiamian. Research on the Application of Generative Design based on Deep Learning in Visual Recognition Platform under Digital Background . Journal of Jilin Institute of Chemical Technology, 2023, 40(3): 62-67.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.03.013  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I3/62
[1] 辛 鹏, 杨剀勋, 文孝强. 基于改进SE-CNN的风电机组故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(1): 34-40.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed