Please wait a minute...
吉林化工学院学报, 2023, 40(1): 34-40     https://doi.org/10.16039/j.cnki.cn22-1249.2023.01.008
  本期目录 | 过刊浏览 | 高级检索 |
基于改进SE-CNN的风电机组故障诊断方法研究
辛 鹏1,杨剀勋1**,文孝强2*
1.吉林化工学院 信息与控制工程学院,吉林 吉林132022;2.东北电力大学 自动化工程学院,吉林 吉林132012
Research on Wind Turbine Fault Diagnosis Method based on Improved SE-CNN
XIN Peng1, YANG Kaixun1**, WEN Xiaoqiang 2*
下载:  PDF (1771KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对风电机组发生故障时难以有效地提取故障特征并精准地识别故障等问题,提出了一种基于改进SE-CNN的风电机组故障诊断方法。首先,基于数据采集与监视控制(SCADA)系统采集到的故障风机历史运行数据,使用滑动窗口进行数据扩充,其次使用改进后的压缩激励网络(SEnet)对样本数据的权重进行调整,然后引入全局最大池化层对卷积神经网络(CNN)进行改进,最后使用改进后的CNN学习数据中的故障特征进行故障诊断。实验结果表明,改进SE-CNN的故障诊断性能均优于RNN、PCA-DNN、BiLSTM方法,验证了本文所提方法在风电机组故障诊断上的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛 鹏
杨剀勋
文孝强
关键词:  故障诊断  深度学习  风电机组  SEnet  CNN     
Abstract: 

Aiming at the problem that it is difficult to effectively extract fault features and accurately identify faults when wind turbines fault, In this paper, a wind turbine fault diagnosis method based on improved SE-CNN is proposed. Firstly, a sliding window is used to expand the historical operating data of the wind turbine in fault collected by the supervisory control and data acquisition (SCADA) system, secondly, the improved squeezed excitation network (SEnet) is used to adjust the weights of the sample data, the global maximum pooling layer is used to improve the convolutional neural network (CNN), and finally the improved CNN is used to learn the fault features and perform fault diagnosis. The experimental results show that the improved SE-CNN outperforms RNN, PCA-DNN, and BiLSTM methods in fault diagnosis, which verifies the effectiveness of the proposed method in wind turbine fault diagnosis.

Key words:  fault diagnosis    deep learning    wind turbines    SEnet    CNN
               出版日期:  2023-01-25      发布日期:  2023-01-25      整期出版日期:  2023-01-25
TP 183  
引用本文:    
辛 鹏, 杨剀勋, 文孝强. 基于改进SE-CNN的风电机组故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(1): 34-40.
XIN Peng, YANG Kaixun, WEN Xiaoqiang . Research on Wind Turbine Fault Diagnosis Method based on Improved SE-CNN . Journal of Jilin Institute of Chemical Technology, 2023, 40(1): 34-40.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.01.008  或          https://xuebao.jlict.edu.cn/CN/Y2023/V40/I1/34
[1] 张天驰, 于紫南. 基于自定义深度学习网络双馈风机接入弱电网故障识别[J]. 吉林化工学院学报, 2024, 41(5): 54-59.
[2] 李双远, 刘向阳. 基于改进的Faster R-CNN算法建筑领域裂缝检测研究[J]. 吉林化工学院学报, 2024, 41(5): 50-53.
[3] 王敏. 自适应学习中基于CNN和IIDLA的图像识别方法研究[J]. 吉林化工学院学报, 2024, 41(3): 56-61.
[4] 董如意, 崔冉. 基于YOLOV5L的交通信号灯识别研究 [J]. 吉林化工学院学报, 2023, 40(9): 37-42.
[5] 唐孝育, 孙明革. 基于改进SSD模型的手机盖板玻璃缺陷检测 [J]. 吉林化工学院学报, 2023, 40(9): 70-74.
[6] 张 鋆, 李温温. RRT algorithm; path planning; target offset; variable step size; cubic B-spline curve 基于改进YOLOv5s的玉米田间杂草检测方法 [J]. 吉林化工学院学报, 2023, 40(5): 26-33.
[7] 金何. 基于深度学习融合网络的交直流电网故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(3): 93-98.
[8] 范家墁. 数字化背景下基于深度学习的生成设计在视觉识别平台中的应用研究 [J]. 吉林化工学院学报, 2023, 40(3): 62-67.
[9] 任洛莹 , 刘兴德 , 谢延楠 , 胡文松 , 余鹏泽, 孔志成. CGB-YOLO:用于检测钢铁表面缺陷的YOLO算法 [J]. 吉林化工学院学报, 2023, 40(11): 38-44.
[10] 余思黔, 赵麒荣, 林嘉晨, 贾雁飞, 陈广大. 基于深度学习的核桃外壳缺陷检测 [J]. 吉林化工学院学报, 2022, 39(9): 80-85.
[11] 刘麒, 尹港 , 王影, 叶泽 . 基于深度学习的水面漂浮物识别算法设计 [J]. 吉林化工学院学报, 2022, 39(7): 28-33.
[12] 辛瑞昊 , 王甜甜 , 苗冯博 , 董哲原 , 马占森 , 冯欣. 基于深度学习的机械轴承故障智能诊断 [J]. 吉林化工学院学报, 2022, 39(11): 25-29.
[13] 王升, 林琳, 陈诚, 张杰, 史建成. 基于层次化混合分类器的含未知故障风机轴承故障诊断方法 [J]. 吉林化工学院学报, 2021, 38(9): 36-40.
[14] 魏佳佳. 基于热电联产的汽轮机组油膜振荡故障诊断系统设计 [J]. 吉林化工学院学报, 2021, 38(7): 68-73.
[15] 朱莉, 陈辉. 基于深度学习的单幅图像三维重建算法 [J]. 吉林化工学院学报, 2020, 37(1): 58-62.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed