Please wait a minute...
吉林化工学院学报, 2022, 39(9): 27-32     https://doi.org/10.16039/j.cnki.cn22-1249.2022.09.006
  本期目录 | 过刊浏览 | 高级检索 |
基于机器学习的心脏病预测模型研究
辛瑞昊1,董哲原1**,苗冯博1**,王甜甜1**,李英瑞1**,冯欣2*
1.吉林化工学院 信息与控制工程学院,吉林 吉林 132022;2.吉林化工学院 理学院,吉林 吉林 132022
Research on heart disease prediction model based on machine learning
XIN Ruihao1, DONG Zheyuan1**, MIAO Fengbo1**, WANG Tiantian1**,LI  Yingrui1**, FENG Xin2*
下载:  PDF (1002KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

心脏病作为当今社会对人类生活健康威胁最严重的血管疾病之一,不仅严重威胁人类的生命安全,而且高昂的治疗费用还会给家庭和社会带来严重的经济负担。针对目前心脏病预测研究中存在准确性不足及缺乏特征可解释性的问题,通过挖掘影响心脏病的重要特征,实现对心脏病准确预测和影响因素可解释性分析。首先,利用T检验来分析特征之间的显著差异性(P-value),通过P-value值降序排列选出特征进行组合。然后,利用十种机器学习模型和SHAP方法实现对心脏病的预测及其特征可解释性分析。在UCI心脏病数据集上进行验证实验,在七个医学领域广泛使用的评价指标上都到达了1,优于与对比论文实验结果。最后,利用SHAP方法对13个特征进行可解释性分析,通过特征重要性排序可视化结果,挖掘单个特征与心脏病之间的关联,能为医生对心脏病的精准医疗提供决策支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛瑞昊
董哲原
苗冯博
王甜甜
李英瑞
冯欣
关键词:  心脏病  T检验  机器学习  SHAP  可解释性分析     
Abstract: 

Heart disease, as one of the most serious vascular diseases that threaten human life and health in today's society, not only seriously threatens human life safety, but also brings serious economic burden to families and society due to high treatment costs. Aiming at the problems of insufficient accuracy and lack of feature interpretability in the current heart disease prediction research, by mining the important features that affect heart disease, the accurate prediction of heart disease and the interpretability analysis of influencing factors are realized. First, use the T test to analyze the significant difference (P-value) between the features, and select the features to combine by descending the P-value value. Then, the prediction of heart disease and its feature interpretability analysis were implemented using ten machine learning models and SHAP methods. Validation experiments were performed on the UCI heart disease dataset, and it reached 1 on seven evaluation indicators widely used in medical fields, which was better than and compared with the experimental results of the paper. Finally, the SHAP method is used to analyze the interpretability of 13 features, and the results are visualized through feature importance ranking, and the association between a single feature and heart disease can be mined, which can provide decision support for doctors in precision medicine for heart disease.

Key words:  heart disease prediction    t-test    machine learning    SHAP    interpretability analysis
               出版日期:  2022-09-25      发布日期:  2022-09-25      整期出版日期:  2022-09-25
ZTFLH:  G40-051  
引用本文:    
辛瑞昊, 董哲原, 苗冯博, 王甜甜, 李英瑞, 冯欣. 基于机器学习的心脏病预测模型研究 [J]. 吉林化工学院学报, 2022, 39(9): 27-32.
XIN Ruihao, DONG Zheyuan, MIAO Fengbo, WANG Tiantian, LI Yingrui, FENG Xin. Research on heart disease prediction model based on machine learning . Journal of Jilin Institute of Chemical Technology, 2022, 39(9): 27-32.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2022.09.006  或          http://xuebao.jlict.edu.cn/CN/Y2022/V39/I9/27
[1] 冯欣, 苗冯博 , 王甜甜 , 董哲原 , 丛萍 , 辛瑞昊. 基于文本挖掘技术的教育类文献主题识别方法研究 [J]. 吉林化工学院学报, 2022, 39(7): 72-76.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed