Please wait a minute...
吉林化工学院学报, 2022, 39(9): 27-32     https://doi.org/10.16039/j.cnki.cn22-1249.2022.09.006
  本期目录 | 过刊浏览 | 高级检索 |
基于机器学习的心脏病预测模型研究
辛瑞昊1,董哲原1**,苗冯博1**,王甜甜1**,李英瑞1**,冯欣2*
1.吉林化工学院 信息与控制工程学院,吉林 吉林 132022;2.吉林化工学院 理学院,吉林 吉林 132022
Research on heart disease prediction model based on machine learning
XIN Ruihao1, DONG Zheyuan1**, MIAO Fengbo1**, WANG Tiantian1**,LI  Yingrui1**, FENG Xin2*
下载:  PDF (1002KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

心脏病作为当今社会对人类生活健康威胁最严重的血管疾病之一,不仅严重威胁人类的生命安全,而且高昂的治疗费用还会给家庭和社会带来严重的经济负担。针对目前心脏病预测研究中存在准确性不足及缺乏特征可解释性的问题,通过挖掘影响心脏病的重要特征,实现对心脏病准确预测和影响因素可解释性分析。首先,利用T检验来分析特征之间的显著差异性(P-value),通过P-value值降序排列选出特征进行组合。然后,利用十种机器学习模型和SHAP方法实现对心脏病的预测及其特征可解释性分析。在UCI心脏病数据集上进行验证实验,在七个医学领域广泛使用的评价指标上都到达了1,优于与对比论文实验结果。最后,利用SHAP方法对13个特征进行可解释性分析,通过特征重要性排序可视化结果,挖掘单个特征与心脏病之间的关联,能为医生对心脏病的精准医疗提供决策支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛瑞昊
董哲原
苗冯博
王甜甜
李英瑞
冯欣
关键词:  心脏病  T检验  机器学习  SHAP  可解释性分析     
Abstract: 

Heart disease, as one of the most serious vascular diseases that threaten human life and health in today's society, not only seriously threatens human life safety, but also brings serious economic burden to families and society due to high treatment costs. Aiming at the problems of insufficient accuracy and lack of feature interpretability in the current heart disease prediction research, by mining the important features that affect heart disease, the accurate prediction of heart disease and the interpretability analysis of influencing factors are realized. First, use the T test to analyze the significant difference (P-value) between the features, and select the features to combine by descending the P-value value. Then, the prediction of heart disease and its feature interpretability analysis were implemented using ten machine learning models and SHAP methods. Validation experiments were performed on the UCI heart disease dataset, and it reached 1 on seven evaluation indicators widely used in medical fields, which was better than and compared with the experimental results of the paper. Finally, the SHAP method is used to analyze the interpretability of 13 features, and the results are visualized through feature importance ranking, and the association between a single feature and heart disease can be mined, which can provide decision support for doctors in precision medicine for heart disease.

Key words:  heart disease prediction    t-test    machine learning    SHAP    interpretability analysis
               出版日期:  2022-09-25      发布日期:  2022-09-25      整期出版日期:  2022-09-25
G40-051  
引用本文:    
辛瑞昊, 董哲原, 苗冯博, 王甜甜, 李英瑞, 冯欣. 基于机器学习的心脏病预测模型研究 [J]. 吉林化工学院学报, 2022, 39(9): 27-32.
XIN Ruihao, DONG Zheyuan, MIAO Fengbo, WANG Tiantian, LI Yingrui, FENG Xin. Research on heart disease prediction model based on machine learning . Journal of Jilin Institute of Chemical Technology, 2022, 39(9): 27-32.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2022.09.006  或          https://xuebao.jlict.edu.cn/CN/Y2022/V39/I9/27
[1] 姜春雨, 王伟. 基于类别查询的视觉Transformer研究[J]. 吉林化工学院学报, 2024, 41(3): 62-67.
[2] 胡佳利, 王威娜. 基于子类聚类和SAX表示的Shapelet快速发现算法 [J]. 吉林化工学院学报, 2022, 39(11): 20-24.
[3] 冯欣 李英瑞 王苹 董哲原 辛瑞昊. 基于机器学习的小鼠基因位点预测方法研究 [J]. 吉林化工学院学报, 2022, 39(11): 14-19.
[1] WANG Ya-hong, JIA Ying-chao. Optimization for Soxhlet Extraction of Total Flavonoids from Eggplant Root by Using Response Surface Methodology[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 1 -6 .
[2] PAN Hong-wei, ZHOU Hong-li. Research Progress on Extraction Technology and Component Analysis of Volatile Flavor Compounds in Plants[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 7 -10 .
[3] ZHOU Zhen-qiang, WANG Kai-bao, CHEN Yu-tian, HAN Ji, HOU Dai-bing, GUO Wen-qi. Analysis of the Design and Dynamic Characteristics of Recyclable Garbage Crushing Device[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 31 -35 .
[4] ZHU Qi-rui, ZHANG Yu-feng, LI Yang-xin, WU Dong-jun, BI Shuai-nan, ZHOU Rui-jie, YOU Sai-sai. The Structural Design and Parameter Analysis of the Chair Structure of Quadriplegia of Cerebral Palsy[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 40 -44 .
[5] ZHANG Yun-peng. Preparation and Characterization of Er3+Y3+Yb3+ Co-doped Al2O3 Luminescence Materials[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 58 -63 .
[6] MI Ya-wei. Proof of the Manifold of n Manifold[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 64 -66 .
[7] XU You-zhuan, ZHOU Hou-qing. The Lower Bounds of Energy for Some Circulant Graph[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 67 -72 .
[8] ZHOU Hong-li, ZHANG Yang, CUI Hao, XUE Jian-fei. Primary Exploration of the Applied Pharmaceutical Talents Training in Ordinary Engineering Colleges Based on Social Needs and R ecruitment Drives[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(2): 1 -4 .
[9] YANG Xiu-dong, WANG Ya-hong, ZHANG Pin-mei, YANG Yan-jun, CUI Hao, ZHOU Hong-li. Discussion on the Practice Teaching Reform of Pharmaceutical Engineering Based on Engineering Education Professional Accreditation[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(2): 5 -7 .
[10] LI Long, WANG Xue-mei. Research on Higher Education Assessment Mode Based on Formative Evaluation and Information Entropy Theory[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(2): 8 -12 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed