Please wait a minute...
吉林化工学院学报, 2024, 41(5): 54-59     https://doi.org/10.16039/j.cnki.cn22-1249.2024.05.010
  本期目录 | 过刊浏览 | 高级检索 |
基于自定义深度学习网络双馈风机接入弱电网故障识别
张天驰1**,于紫南2* 
1. 东南大学?软件学院 江苏 南京 214135,2. 国网吉林省电力有限公司 吉林供电公司 吉林 吉林 132000
Fault Recognition under Weak Grid Condition Based on Doubly Fed Induction Generator With Customized Deep Learning Network
ZHANG Tianchi1,YU Zinan2 *
1. Software Collage ,Southeast University,Nanjing 214135,China;2.Jilin Power Supply Company, State Grid Jilin Electric Power Co., Ltd.,  Jilin City 132000, China
下载:  PDF (2130KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对双馈风机接入弱交流电网的故障检测问题,提出一种自定义深度学习网络框架下的故障识别和算法。首先采集实际系统的运行数据,通过归一化操作将其转化为零均值数据,然后用自定义深度学习网络训练数据集,形成预训练网络。同时模拟异常数据,输入至此前的预训练网络中,输出预测数据。根据预测数据和模拟异常数据计算出阈值,当预测数据和模拟异常数据差值绝对值超出阈值后,判断系统数据异常。仿真结果表明,所提方法能够比较准确解决故障识别问题,可以被用于含双馈风机弱电网中故障检测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张天驰
于紫南
关键词:  自定义深度学习网络  双馈风机  弱电网  故障识别    
Abstract:  In view of the problem of fault detection under the condition of doubly-fed wind turbine access to the weak AC grid at present, a fault recognition and detection algorithm under the framework of customized deep learning network is proposed. Firstly, the actual system data is used and normalized to zero-mean standard data, and then the data set is trained by customized deep learning network to form a pre-training network. At the same time, abnormal data is simulated and input to the previously pre-trained network to output prediction data. The threshold is calculated according to the prediction data and simulated abnormal data. When the absolute value of the difference between the prediction data and the simulated abnormal data exceeds the threshold, the system data is judged to be abnormal. The simulation results show that the proposed method can solve the fault recognition problem more accurately and meet the requirements of fault detection in a weak grid containing doubly-fed wind turbines.
Key words:  customized deep learning network    doubly-fed wind turbine    weak grid    fault recognition 
               出版日期:  2024-05-25      发布日期:  2024-05-25      整期出版日期:  2024-05-25
ZTFLH:  TM74  
引用本文:    
张天驰, 于紫南. 基于自定义深度学习网络双馈风机接入弱电网故障识别[J]. 吉林化工学院学报, 2024, 41(5): 54-59.
ZHANG Tianchi, YU Zinan. Fault Recognition under Weak Grid Condition Based on Doubly Fed Induction Generator With Customized Deep Learning Network. Journal of Jilin Institute of Chemical Technology, 2024, 41(5): 54-59.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.05.010  或          http://xuebao.jlict.edu.cn/CN/Y2024/V41/I5/54
[1] 王辅民, 周红娟, 冯国亮, 邢雪. 基于特征融合的空压机故障诊断算法研究[J]. 吉林化工学院学报, 2024, 41(3): 37-41.
[2] 曾娜. 电厂汽轮机高中压转子振动突变故障识别研究 [J]. 吉林化工学院学报, 2022, 39(7): 94-99.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed