Please wait a minute...
吉林化工学院学报, 2024, 41(1): 76-81     https://doi.org/10.16039/j.cnki.cn22-1249.2024.01.013
  本期目录 | 过刊浏览 | 高级检索 |
基于机器视觉的刹车盘工件上下料系统
谢延楠1,刘兴德2
吉林化工学院 信息与控制工程学院,吉林 吉林 132022
Machine Vision based Loading and Unloading System for Brake Disc Workpieces
XIE Yannan1, LIU Xingde2
School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin City 132022,China
下载:  PDF (5684KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在传统刹车盘的生产过程中,几乎都采用人力进行加工机床上下料。这种作业方式存在搬运效率低、生产成本高、无法满足高效生产的问题,提出一种基于机器视觉的刹车盘工件的上下料系统,将视觉与工业机器人相结合,搭建的系统能够准确地识别出工件的位姿,并将位姿结果转换到机器人的坐标系下,从而引导机器人准确抓取工件。经实验证明,该系统具有自主灵活性,且能够顺利完成刹车盘的上下料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢延楠
刘兴德
关键词:  机器视觉  工业机器人  识别  抓取    
Abstract: In the production process of traditional brake discs, manual labor is almost always used for loading and unloading the machine tools. This operation method has the problems of low handling efficiency, high production cost, and cannot meet the requirements of efficient production. A loading and unloading system for brake disc workpieces based on machine vision is proposed. It combines vision with industrial robots and builds a system that can accurately identify the pose of the workpiece is obtained, and the pose result is converted into the coordinate system of the robot, thereby guiding the robot to accurately grasp the workpiece. Experiments have proven that the system has autonomous flexibility and can successfully complete the loading and unloading of brake discs.
Key words:  machine vision    industrial robot    distinguish    grab
               出版日期:  2024-01-25      发布日期:  2024-01-25      整期出版日期:  2024-01-25
ZTFLH:  TP23   
引用本文:    
谢延楠, 刘兴德. 基于机器视觉的刹车盘工件上下料系统[J]. 吉林化工学院学报, 2024, 41(1): 76-81.
XIE Yannan, LIU Xingde. Machine Vision based Loading and Unloading System for Brake Disc Workpieces. Journal of Jilin Institute of Chemical Technology, 2024, 41(1): 76-81.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.01.013  或          http://xuebao.jlict.edu.cn/CN/Y2024/V41/I1/76
[1] 崔世磊, 孙明革 , 高聪, 郭晓龙, 李迎岗. 基于YOLOv7的番茄检测算法优化与实现[J]. 吉林化工学院学报, 2024, 41(3): 25-30.
[2] 王辅民 , 周红娟, 冯国亮, 邢雪. 基于特征融合的空压机故障诊断算法研究[J]. 吉林化工学院学报, 2024, 41(3): 37-41.
[3] 刘麒, 谭丁诚, 刘振刚, 王影. 基于DBO-BP的工业机器人定位误差补偿方法[J]. 吉林化工学院学报, 2024, 41(1): 59-66.
[4] 林建华, 林二妹. 一种智能果蔬识别称重系统的设计 [J]. 吉林化工学院学报, 2023, 40(7): 83-87.
[5] 范家墁. 数字化背景下基于深度学习的生成设计在视觉识别平台中的应用研究 [J]. 吉林化工学院学报, 2023, 40(3): 62-67.
[6] 赵梦瑶, 朱建军. 基于三维点云的机械臂抓取位姿检测方法 [J]. 吉林化工学院学报, 2023, 40(11): 54-60.
[7] 余思黔, 赵麒荣, 林嘉晨, 贾雁飞, 陈广大. 基于深度学习的核桃外壳缺陷检测 [J]. 吉林化工学院学报, 2022, 39(9): 80-85.
[8] 刘麒, 尹港 , 王影, 叶泽 . 基于深度学习的水面漂浮物识别算法设计 [J]. 吉林化工学院学报, 2022, 39(7): 28-33.
[9] 曾娜. 电厂汽轮机高中压转子振动突变故障识别研究 [J]. 吉林化工学院学报, 2022, 39(7): 94-99.
[10] 吴青云, 邹亚囡, 史雪莹. 基于卷积神经网络的电子鼻分类识别 [J]. 吉林化工学院学报, 2022, 39(11): 38-41.
[11] 梁正, 武广斌. 气动柔性五指机械手运动空间与抓取实验研究 [J]. 吉林化工学院学报, 2021, 38(7): 85-90.
[12] 贺大伟, 崔耀琦, 葛晓昱. 叙事文语篇的人物回指研究 [J]. 吉林化工学院学报, 2021, 38(6): 84-87.
[13] 张飞. 基于试探的未知类别聚类的识别算法应用研究 [J]. 吉林化工学院学报, 2021, 38(5): 23-26.
[14] 刘兴德, 周海宇, 靳曦. L型板抓取柔性机械手的设计 [J]. 吉林化工学院学报, 2021, 38(3): 13-15.
[15] 李百明. 基于机器视觉的钢珠直径测量系统设计 [J]. 吉林化工学院学报, 2021, 38(1): 58-62.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed