Please wait a minute...
吉林化工学院学报, 2023, 40(9): 70-74     https://doi.org/10.16039/j.cnki.cn22-1249.2023.09.013
  本期目录 | 过刊浏览 | 高级检索 |
基于改进SSD模型的手机盖板玻璃缺陷检测
唐孝育,孙明革*
吉林化工学院 信息与控制工程学院,吉林 吉林 132022
Detection of Defects in Mobile Phone Cover Glass based on Improved SSD Model
TANG Xiaoyu1,SUN Mingge1*
School of Information and Control Engineering,Jilin Institude of Chemical Technology,Jilin City 132002,china
下载:  PDF (1545KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在手机盖板玻璃小缺陷检测中,针对传统单阶段多层检测器(Single Shot Multibox Detector, SSD)模型检测存在漏检的问题,提出了一种改进的SSD模型。该模型使用ResNet50作为主干网络,同时融入膨胀卷积和注意力机制SeNet,从而提升小缺陷检测精度。在缺陷数据集上进行了实验对比,实验表明改进的SSD模型与较传统SSD模型相比,模型的检测精度更高、漏检率更低,能够满足缺陷检测的精度要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐孝育
孙明革
关键词:  缺陷检测  手机盖板玻璃  SSD  ResNet50  SeNet     
Abstract: 

In the detection of small defects in the glass of mobile phone cover plates, an improved SSD model is proposed to address the issue of missed detection in traditional single shot multi-layer detector (SSD) models. This model uses ResNet50 as the backbone network, while incorporating dilation convolution and attention mechanism SeNet to improve the accuracy of small defect detection. Experimental comparisons were conducted on the defect dataset, and the results showed that the improved SSD model had higher detection accuracy and lower miss rate compared to traditional SSD models, which could meet the accuracy requirements of defect detection.

Key words:  defect detection    smartphone cover glass    SSD    ResNet50    SeNet
               出版日期:  2023-09-25      发布日期:  2023-09-25      整期出版日期:  2023-09-25
ZTFLH:  TP39  
引用本文:    
唐孝育, 孙明革. 基于改进SSD模型的手机盖板玻璃缺陷检测 [J]. 吉林化工学院学报, 2023, 40(9): 70-74.
TANG Xiaoyu, SUN Mingge. Detection of Defects in Mobile Phone Cover Glass based on Improved SSD Model . Journal of Jilin Institute of Chemical Technology, 2023, 40(9): 70-74.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.09.013  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I9/70
[1] 李汉雄, 孙明革. 基于LabVIEW视觉的IC插座插孔缺陷检测平台设计 [J]. 吉林化工学院学报, 2023, 40(5): 46-50.
[2] 辛 鹏, 杨剀勋, 文孝强. 基于改进SE-CNN的风电机组故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(1): 34-40.
[3] 余思黔, 赵麒荣, 林嘉晨, 贾雁飞, 陈广大. 基于深度学习的核桃外壳缺陷检测 [J]. 吉林化工学院学报, 2022, 39(9): 80-85.
[4] 王雪晴, 刘锦涛, 卫亚博, 赵换丽. 基于机器视觉和LabVIEW的有机玻璃缺陷检测研究 [J]. 吉林化工学院学报, 2021, 38(1): 68-73.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed