Please wait a minute...
吉林化工学院学报, 2023, 40(1): 68-73     https://doi.org/10.16039/j.cnki.cn22-1249.2023.01.015
  本期目录 | 过刊浏览 | 高级检索 |
基于机器视觉的点阵字符分割方法
李百明
黎明职业大学 智能制造工程学院,福建 泉州 362000
Segmentation Method of Dot Matrix Character Based on Machine Vision
LI Baiming

下载:  PDF (4790KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对点阵喷码字符因背景复杂、局部漏喷或字符模糊等原因导致字符识别率低的问题,提出了一种基于机器视觉的点阵字符分割方法。首先,利用Blob分析从图像中快速定位出点阵字符所在矩形区域,并将其旋转到水平方向;然后,采用水平灰度投影法将该矩形区域分割成两行,再采用垂直灰度投影法结合字符宽度特征将每行中的字符分割开来;最后,将分割出的字符送入MLP分类器进行识别。实验结果显示,该方法的分割准确率为98.7%,显著优于现有的分割方法,且还具有较强的识别通用性;因此,该方法在点阵字符识别方面具有良好的应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李百明
关键词:  点阵字符  Blob分析  灰度投影     
Abstract: 

A dot matrix character segmentation method based on machine vision was proposed to address the low recognition rate of dot matrix characters caused by complex backgrounds, local leakage, or blurred characters. First, the rectangular area where the dot matrix characters were located was quickly located from the image using Blob analysis and rotated to the horizontal direction. Then, the rectangular area was segmented into two rows using horizontal grey scale projection, and the characters in each row were segmented using vertical grey scale projection combined with character width features. Finally, the segmented characters were fed into the MLP classifier for recognition. The experimental results show that the segmentation accuracy of the method is 98.7%, which is significantly better than existing segmentation methods, and also has strong recognition generality; therefore, the method has good application value in the recognition of dot matrix characters.

Key words:  dot matrix character    Blob analysis    grey projection
               出版日期:  2023-01-25      发布日期:  2023-01-25      整期出版日期:  2023-01-25
ZTFLH:  TP391  
引用本文:    
李百明. 基于机器视觉的点阵字符分割方法 [J]. 吉林化工学院学报, 2023, 40(1): 68-73.
LI Baiming. Segmentation Method of Dot Matrix Character Based on Machine Vision . Journal of Jilin Institute of Chemical Technology, 2023, 40(1): 68-73.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.01.015  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I1/68
[1] 胡佳利, 王威娜. 基于子类聚类和SAX表示的Shapelet快速发现算法 [J]. 吉林化工学院学报, 2022, 39(11): 20-24.
[2] 辛瑞昊 , 王甜甜 , 苗冯博 , 董哲原 , 马占森 , 冯欣. 基于深度学习的机械轴承故障智能诊断 [J]. 吉林化工学院学报, 2022, 39(11): 25-29.
[3] 赵会娟, 高清冉. CAD/CAE技术在某电器盖注塑模设计上的应用 [J]. 吉林化工学院学报, 2022, 39(9): 92-98.
[4] 尹小定, 赵会娟, 王登化. 多腔模设计中非平衡浇注系统优化与充填分析 [J]. 吉林化工学院学报, 2022, 39(9): 99-104.
[5] 潘志奎, 陈雪. 排气管焊接夹具夹爪的优化设计 [J]. 吉林化工学院学报, 2022, 39(7): 106-110.
[6] 刘麒, 尹港 , 王影, 叶泽 . 基于深度学习的水面漂浮物识别算法设计 [J]. 吉林化工学院学报, 2022, 39(7): 28-33.
[7] 周海宇 , 刘兴德 , 蔚芳鑫 , 卢添烨 , 刁建超. 基于双目视觉的L型板几何参数测量研究 [J]. 吉林化工学院学报, 2022, 39(3): 83-87.
[8] 周燕茹. 基于模糊数学的高维稀疏数据聚类统计方法设计 [J]. 吉林化工学院学报, 2021, 38(9): 107-111.
[9] 董艺, 路云龙. 基于相关性分析和主成分分析的基因调控网络研究 [J]. 吉林化工学院学报, 2021, 38(9): 112-116.
[10] 潘志奎, 陈雪, 陈成. 汽车排气管焊接夹具的运动学仿真 [J]. 吉林化工学院学报, 2021, 38(7): 81-84.
[11] 宋艳英. 基于高斯过程回归与硬件优化的可见光室内定位设计 [J]. 吉林化工学院学报, 2021, 38(7): 43-48.
[12] 李三三, 乔亚伟, 陈双. 利用反映帧间图像界定运动员跑步训练强度仿真 [J]. 吉林化工学院学报, 2021, 38(7): 59-64.
[13] 张飞. 基于试探的未知类别聚类的识别算法应用研究 [J]. 吉林化工学院学报, 2021, 38(5): 23-26.
[14] 吴博. 基于KNN算法的跑步运动轨迹监测系统设计 [J]. 吉林化工学院学报, 2021, 38(5): 32-37.
[15] 左学武. 基于融合粒子群的高等数学辅助教学系统设计 [J]. 吉林化工学院学报, 2021, 38(5): 80-84.
[1] ZHAO Chan-juan, XU Xiu-jie. A Probe into the Path of Promoting the Spirits of Xi Jinping's Series of Speeches into Ideological and Political Class of Colleges and Universities [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(10): 30 -35 .
[2] WANG Xin, LIU Meng-zhu, WANG Yong-peng, LU Da-yong. Exploration and Practice of Intersectional Talent Training of Inorganic Nonmetallic Materials and Metallic Materials [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(12): 25 -28 .
[3] YANG Zhi-lin, SUN Wei. The Development of Traditional Sports Culture in the New Media Era [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(12): 92 -95 .
[4] ZHOU Ming, WANG Ya-hong, CHU Xu. Preparation and Quality Evaluation of Total Triterpenoid Saponins Hard Capsule from Orostachys fimbriatus (Turcz) Berger[J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(1): 21 -24 .
[5] SONG Yan, WANG Fang-fei, ZHOU Lin-yuan. Cu2+ Fluorescence/Colorimetric Sensor Based on Rhodamine Derivatives [J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(1): 70 -74 .
[6] HAO Rui-song. A Study of Key Literacy and Teaching Reform of the Course-Selected Readings of English Newspapers and Magazines [J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(2): 1 -4 .
[7] YANG Mei, REN Zhong-yuan, HANG Qiu-ting, WEN Gang. Research on Experiment Teaching Reform and Practice of Engineering Specialty in the Context of Transformation of Local Universities [J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(2): 26 -29 .
[8] XUAN Li-ying. Investigation and Analysis on the Status of Nationwide Reading in Jilin Province [J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(2): 76 -78 .
[9] JIANG Xiangbing. The General Situation of HPPO Technology and the key Problems in Production Process [J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(3): 9 -16 .
[10] JI Lv, LU Dayong. Study on Solid Solubility and Site Occupations in (Ba1-xPrx)Ti1-x/4O3 Ceramics [J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(3): 78 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed