Please wait a minute...
吉林化工学院学报, 2021, 38(3): 87-90     https://doi.org/10.16039/j.cnki.cn22-1249.2021.03.018
  本期目录 | 过刊浏览 | 高级检索 |
基于Chebyshev逼近的分数阶谱微分算子矩阵
张光辉
宿州学院 数学与统计学院,安徽 宿州 234000
Spectral Operator Matrix Based on Chebyshev Approximation
ZHANG Guanghui
下载:  PDF (317KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

基于chebyshev逼近,导出了整数s阶谱微分算子矩阵,利用chebyshev多项式、chebyshev多项式导数的三项递推关系式,给出了一个计算分数α 阶谱微分算子矩阵的递推格式. 数值算例验证了格式的精度和效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张光辉
关键词:  chebyshev逼近  分数阶  谱微分矩阵     
Abstract: 

Based on chebyshev approximation, an integer-order spectral operator differential matrix is derive, and a recurrence scheme for computing fractional spectral differential operator matrix is also obtained by using the three terms recurrence of chebyshev polynomials and the derivatives of chebyshev polynomials. Numerical examples are given to demonstrate the accuracy and effectiveness of the scheme.

Key words:  chebyshev approximation    fractional order    spectral differential matrix
               出版日期:  2021-03-25      发布日期:  2021-03-25      整期出版日期:  2021-03-25
ZTFLH:  O174.41  
引用本文:    
张光辉. 基于Chebyshev逼近的分数阶谱微分算子矩阵 [J]. 吉林化工学院学报, 2021, 38(3): 87-90.
ZHANG Guanghui. Spectral Operator Matrix Based on Chebyshev Approximation . Journal of Jilin Institute of Chemical Technology, 2021, 38(3): 87-90.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2021.03.018  或          http://xuebao.jlict.edu.cn/CN/Y2021/V38/I3/87
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed