Please wait a minute...
吉林化工学院学报, 2020, 37(7): 49-53     https://doi.org/10.16039/j.cnki.cn22-1249.2020.07.012
  本期目录 | 过刊浏览 | 高级检索 |
基于隐语义模型的推荐算法研究
王子岚1,曹路舟2
1.黄山职业技术学院 工业与财贸系,安徽 黄山 245000; 2.安徽黄梅戏艺术职业学院 图文信息中心,安徽 安庆 246000
Research on Recommendation Algorithm Based on Implicit Semantic Model
WANG Zilan1,CAO Luzhou2
下载:  PDF (740KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对传统推荐算法用户兴趣值低、准确性差的问题,提出基于隐语义模型的推荐算法研究。首先对隐语义模型数据特征值进行采集,获取用户的个性化喜好信息,并针对采集到的特征数据及搜索关键词,进行不同信息之间的关联性数值的判断和分类处理。在此基础上,根据判断和分类处理结果对不同层次的信息进行推荐排序处理,优化模型信息推荐步骤,实现隐语义模型信息推荐。实验研究结果表明,基于隐语义模型的推荐算法的用户兴趣值高于其他传统推荐算法,且信息推荐的准确性较高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王子岚
曹路舟
关键词:  隐语义模型  兴趣信息  推荐算法  特征采集  个性化     
Abstract: 

Aiming at the problem of low interest and low accuracy of traditional recommendation algorithm, this paper proposes a new recommendation algorithm based on implicit model. Firstly, we collect the feature values of the implicit model data to obtain the user's personalized preference information, and then judge and classify the relevance values of different information according to the collected feature data and search keywords. On this basis, according to the results of judgment and classification processing, different levels of information are recommended and sorted, and the steps of model information recommendation are optimized to realize the recommendation of implicit model information. The experimental results show that the user interest value of the recommendation algorithm based on the implicit model is higher than other traditional recommendation algorithms, and the accuracy of information recommendation is higher.

Key words:  hidden semantic model    interest information    recommendation algorithm    feature collection    personal preferences
               出版日期:  2020-07-25      发布日期:  2020-07-25      整期出版日期:  2020-07-25
ZTFLH:  TP391  
引用本文:    
王子岚, 曹路舟. 基于隐语义模型的推荐算法研究 [J]. 吉林化工学院学报, 2020, 37(7): 49-53.
WANG Zilan, CAO Luzhou. Research on Recommendation Algorithm Based on Implicit Semantic Model . Journal of Jilin Institute of Chemical Technology, 2020, 37(7): 49-53.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2020.07.012  或          http://xuebao.jlict.edu.cn/CN/Y2020/V37/I7/49
[1] 张嘉麟. 语文教学兴趣研究及对策 [J]. 吉林化工学院学报, 2020, 37(2): 58-60.
[2] 范宇. 基于大数据的高校图书馆个性化服务路径 [J]. 吉林化工学院学报, 2019, 36(12): 67-70.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed