CNN,改进迭代深度学习,图像识别,医学,自适应学习 ," /> CNN,改进迭代深度学习,图像识别,医学,自适应学习 ,"/> CNN, IIDLA,image recognition,medicine, adaptive learning ,"/> 自适应学习中基于CNN和IIDLA的图像识别方法研究
Please wait a minute...
吉林化工学院学报, 2024, 41(3): 56-61     https://doi.org/10.16039/j.cnki.cn22-1249.2024.03.010
  本期目录 | 过刊浏览 | 高级检索 |
自适应学习中基于CNN和IIDLA的图像识别方法研究
王敏#br# #br#
福建船政交通职业学院  教务处,福建 福州 350007
Image Recognition Method based on CNN and IIDLA in Adaptive Learning
WANG Min
Dean's office, Fujian Chuanzheng Communications College,Fuzhou 350007, China
下载:  PDF (1238KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

近年来计算机辅助医学进行影像诊断逐渐成了该领域的研究热点,为了更好地对医学图像特征进行分类与识别,研究以自适应学习为背景,提出一种融合卷积神经网络与改进迭代深度学习的图像识别方法。过程中引入随机化融合改进卷积神经网络,以应对医学图像的多模态特征提取,并结合改进迭代深度学习避免图像数据信息丢失,最终完成对图像信息的识别。结果显示,研究方法在训练集与验证集上进行实验,当迭代进行到第28次与第17次时,系统便开始趋于稳定,对应得到损失函数值分别为0.0124与0.0112。当四种算法的精准率为0.900时,得到的改进型深度学习模型、LeNet-5CNN模型、IYolo-v5模型以及研究方法对应的召回率分别为0.6232、0.5791、0.6774与0.8369。研究方法对5种疾病的识别准确率均明显高于95%。以上结果表示研究方法具有较快的收敛速度与精度,同时能够被广泛应用于多种类型疾病的图像诊断识别当中。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王敏
关键词:  CNN')" href="#">

CNN  改进迭代深度学习  图像识别  医学  自适应学习     

Abstract: 

In recent years, computer-assisted medical imaging diagnosis has gradually become a research hotspot in this field. In order to better classify and identify medical image features, this study proposes an image recognition method that integrates convolutional neural networks and improved iterative deep learning based on adaptive learning. In the process, a randomized fusion improved convolutional neural network is introduced to cope with the multimodal feature extraction of medical images, and combined with improved iterative deep learning to avoid the loss of image data information, and finally complete the recognition of image information. The results show that the research method is experimented on the training set and the validation set. When the iteration is carried out to the 28th and 17th times, the system begins to stabilize, and the corresponding loss function values are 0.0124 and 0.0112 respectively. When the precision of the four algorithms is 0.900, the recall rates of the improved deep learning model, LeNet-5CNN model, IYolo-v5 model and the research method are 0.6232, 0.5791, 0.6774 and 0.8369 respectively. The recognition accuracy of the research method for the five diseases is significantly higher than 95%. The above results indicate that the research method has a fast convergence speed and accuracy, and can be widely used in image diagnosis and recognition of various types of diseases.

Key words:  CNN')" href="#">

CNN    IIDLA    image recognition    medicine    adaptive learning

               出版日期:  2024-03-25      发布日期:  2024-03-25      整期出版日期:  2024-03-25
ZTFLH:  R318  
引用本文:    
王敏. 自适应学习中基于CNN和IIDLA的图像识别方法研究[J]. 吉林化工学院学报, 2024, 41(3): 56-61.
WANG Min. Image Recognition Method based on CNN and IIDLA in Adaptive Learning. Journal of Jilin Institute of Chemical Technology, 2024, 41(3): 56-61.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2024.03.010  或          http://xuebao.jlict.edu.cn/CN/Y2024/V41/I3/56
[1] 贾淑斌, 刘辉. 开展医学生医德养成教育的必要性探析 [J]. 吉林化工学院学报, 2019, 36(6): 66-68.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed