Please wait a minute...
吉林化工学院学报, 2023, 40(11): 89-94     https://doi.org/10.16039/j.cnki.cn22-1249.2023.11.017
  本期目录 | 过刊浏览 | 高级检索 |
基于HSV空间的Retinex煤矿井下图像增强算法
张拓
中国矿业大学(北京) 人工智能学院,北京 100083
Enhancement of Underground Coal Mine Images Using HSV-based Retinex Algorithm
ZHANG Tuo
China University of Mining & Technology Beijing ,College of Artificial Intelligence ,Beijing
下载:  PDF (4970KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

对煤矿井下进行实时监控,收取图像信息,并进行安全警报是矿井安全研究的重要内容。然而,受光照与粉尘等因素的影响,使得煤矿井下采集到的图像比较模糊。针对这一影响,提出了一种基于HSV空间的Retinex煤矿井下图像增强算法:将RGB图像映射到HSV空间中,对HSV空间的对应分量分别处理再映射回RGB空间。在实验中,分别对反映矿井整体信息的图像和反映矿井物体局部细节的图像进行增强处理。实验结果表明:相较于传统Retinex算法,经该算法处理过图像的SSIM、PSRN、信息熵指标均有所提高,且更有助于增强图像的边缘细节,这对煤矿井下的安全防范有重要的意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张拓
关键词:  图像增强  HSV空间  Retinex算法  CLAHE算法     
Abstract: 

Real-time monitoring of coal mines underground, collecting image information, and conducting safety alerts are important aspects of mine safety research. However, factors such as lighting and dust affect the clarity of images collected underground in coal mines. To address this issue, an image enhancement algorithm for coal mine underground images based on the HSV space Retinex has been proposed. This algorithm maps RGB images to HSV space, processes the corresponding components in HSV space, and then remaps them back to RGB space. In experiments, both images reflecting the overall information of the mine and images showing local details of objects in the mine were enhanced. The results show that compared to the traditional Retinex algorithm, the images processed by this algorithm have improved in terms of SSIM, PSRN, and information entropy, and are more effective in enhancing the edge details of the images, which is of great significance for the safety precautions in coal mines underground.

Key words:  image enhancement    HSV color space         Retinex algorithm    CLAHE algorithm.
               出版日期:  2023-11-25      发布日期:  2023-11-25      整期出版日期:  2023-11-25
ZTFLH:  TN911.73  
引用本文:    
张拓. 基于HSV空间的Retinex煤矿井下图像增强算法 [J]. 吉林化工学院学报, 2023, 40(11): 89-94.
ZHANG Tuo. Enhancement of Underground Coal Mine Images Using HSV-based Retinex Algorithm . Journal of Jilin Institute of Chemical Technology, 2023, 40(11): 89-94.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.11.017  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I11/89
[1] 陈晨 , 梁霄. 低照度下平面图像舒适色度范围测定方法 [J]. 吉林化工学院学报, 2022, 39(5): 83-88.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed