Please wait a minute...
吉林化工学院学报, 2023, 40(9): 86-94     https://doi.org/10.16039/j.cnki.cn22-1249.2023.09.016
  本期目录 | 过刊浏览 | 高级检索 |
计及用户满意度的智慧工业园区配能优化策略
陈芳1,王吉1,宋剑朝2**,候承昊1,吴萌1,陈海鹏2*
1. 国网山东省电力公司 聊城供电公司,山东 聊城 252000; 2. 东北电力大学 电气工程学院,吉林 吉林 132012
The Optimization Scheduling Strategy Sonsidering the Consumer Satisfaction for the Smart Industrial Parks
CHEN Fang1, WANG Ji1, SONG Jianzhao2**, CHEN Yaxiao1, WU Meng1,CHEN Haipeng2*
1. Liaocheng Power Supply Company, State Grid Shandong Electric Power Company, Liaocheng 252000, China; 2. School of Electrical Engineering, Northeast Electric Power University, Jilin City 132012, China
下载:  PDF (1235KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

随着智能配电网的发展,工业园区也逐步向智慧化迈进。针对智慧工业园区难以充分发挥需求侧用户的响应能力,导致用能水平低、运行经济差问题,提出一种考虑用户满意度的智慧工业园区配能优化策略。首先,提取园区内用户的负荷特性,基于用户用电行为特征,对园区可响应资源进行评估,实现园区工业用户需求响应的潜力分析及响应意愿评估。然后,引入分布式光伏及用户侧需求响应资源,建立以需求响应成本、电网购电成本、碳排放成本、设备运行维护成本之和最小为目标的工业园区配能优化模型,并采用非支配排序遗传算法对该模型进行求解。最后,选取华北某市的工业园区作为案例,验证了所提方法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈芳
王吉
宋剑朝
候承昊
吴萌
陈海鹏
关键词:  智慧工业园区  K-means聚类  分布式光伏  需求侧响应  非支配排序遗传算法  配能优化     
Abstract: 

With the evolution of smart distribution grids, industrial parks are progressively advancing towards intelligence. Addressing the challenges in smart industrial parks where the response capability of demand-side users is underutilized, leading to suboptimal energy use and economic inefficiencies, an energy optimization strategy for smart industrial parks that considers user satisfaction is proposed. Firstly, the load characteristics of users within the park are extracted, and the responsive resources in the park are assessed based on users' electricity consumption behavior, which allows an analysis of the potential for demand response from industrial park users, as well as an evaluation of their willingness to respond. Secondly, the distributed photovoltaic resources and user-side demand response resources are introduced to establish an industrial parks' energy optimization model with the optimization objective of minimizing the sum of demand response cost, grid electricity purchasing cost, carbon emission cost, and equipment operation and maintenance costs. In addition, the non-dominated sorting genetic algorithm is employed to solve this model. Lastly, the effectiveness of the proposed approach is verified through a case study of an industrial park in a city in North China.

Key words:  smart industrial park    K-means clustering    distributed photovoltaic    demand-side response    non-dominated sorting genetic algorithm    energy distribution optimization
               出版日期:  2023-09-25      发布日期:  2023-09-25      整期出版日期:  2023-09-25
ZTFLH:  TM73  
引用本文:    
陈芳, 王吉, 宋剑朝, 候承昊, 吴萌, 陈海鹏. 计及用户满意度的智慧工业园区配能优化策略 [J]. 吉林化工学院学报, 2023, 40(9): 86-94.
CHEN Fang, WANG Ji, SONG Jianzhao, CHEN Yaxiao, WU Meng, CHEN Haipeng. The Optimization Scheduling Strategy Sonsidering the Consumer Satisfaction for the Smart Industrial Parks . Journal of Jilin Institute of Chemical Technology, 2023, 40(9): 86-94.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.09.016  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I9/86
[1] 金何. 基于深度学习融合网络的交直流电网故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(3): 93-98.
[2] 董如意, 马龙. 基于混合核搜索优化与麻雀算法的经济排放调度问题研究 [J]. 吉林化工学院学报, 2023, 40(1): 29-33.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed