Please wait a minute...
吉林化工学院学报, 2023, 40(3): 93-98     https://doi.org/10.16039/j.cnki.cn22-1249.2023.03.018
  本期目录 | 过刊浏览 | 高级检索 |
基于深度学习融合网络的交直流电网故障诊断方法研究
金何
六安职业技术学院 汽车与机电工程学院,安徽 六安 237011
Research on Fault Diagnosis Method of AC/DC Power System based on Deep Learning Fusion Network
JIN He
下载:  PDF (1808KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在电网故障问题日益受到关注的今天,为了提升电力检修部门的电网故障诊断效率,提出了基于堆叠稀疏自动编码器(Stacked Sparse Automatic Encoder, SSAE)和卷积神经网络(Convolution Neural Network, CNN)的SSAE-CNN融合网络交直流电网故障诊断模型。实验结果表明,融合网络故障诊断模型的故障线路诊断准确率为99.86%,高出SSAE-BP诊断模型0.62%,高出一般故障诊断模型两个百分点。故障类型诊断准确率为99.93%,高出SSAE-BP融合模型0.66%。提出的电网故障诊断模型无论在诊断精度,还是诊断速度上均优于一般模型,能对各类电网故障进行准确诊断分类,为电力检修部门进行电网故障诊断提供数据参考,具有重要的实用意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金何
关键词:  交直流电网  深度学习  融合网络  故障诊断     
Abstract: 

In order to improve the efficiency of power grid fault diagnosis in the power maintenance department, the SSAE-CNN fusion network fault diagnosis model of AC and DC power grid based on stack sparse automatic encoder (SSAE) and convolutional neural network (CNN) is proposed. The experimental results show that the fault line diagnosis accuracy of the fusion network diagnosis model is 99.86%, which is 0.62% higher than the SSAE-BP diagnosis model and two percentage points higher than the general fault diagnosis model. The accuracy rate of fault type diagnosis is 99.93%, which is 0.66% higher than SSAE-BP fusion model. The proposed power grid fault diagnosis model is superior to the general model in both diagnosis accuracy and speed. It can accurately diagnose and classify all kinds of power grid faults and provide data reference for power grid fault diagnosis by the power maintenance department, which has important practical significance.

Key words:  AC and DC power grid    deep learning    convergence network    fault diagnosis
               出版日期:  2023-03-25      发布日期:  2023-03-25      整期出版日期:  2023-03-25
ZTFLH:  TM73  
引用本文:    
金何. 基于深度学习融合网络的交直流电网故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(3): 93-98.
JIN He. Research on Fault Diagnosis Method of AC/DC Power System based on Deep Learning Fusion Network . Journal of Jilin Institute of Chemical Technology, 2023, 40(3): 93-98.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2023.03.018  或          http://xuebao.jlict.edu.cn/CN/Y2023/V40/I3/93
[1] 辛 鹏, 杨剀勋, 文孝强. 基于改进SE-CNN的风电机组故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(1): 34-40.
[2] 余思黔, 赵麒荣, 林嘉晨, 贾雁飞, 陈广大. 基于深度学习的核桃外壳缺陷检测 [J]. 吉林化工学院学报, 2022, 39(9): 80-85.
[3] 刘麒, 尹港 , 王影, 叶泽 . 基于深度学习的水面漂浮物识别算法设计 [J]. 吉林化工学院学报, 2022, 39(7): 28-33.
[4] 辛瑞昊 , 王甜甜 , 苗冯博 , 董哲原 , 马占森 , 冯欣. 基于深度学习的机械轴承故障智能诊断 [J]. 吉林化工学院学报, 2022, 39(11): 25-29.
[5] 王升, 林琳, 陈诚, 张杰, 史建成. 基于层次化混合分类器的含未知故障风机轴承故障诊断方法 [J]. 吉林化工学院学报, 2021, 38(9): 36-40.
[6] 魏佳佳. 基于热电联产的汽轮机组油膜振荡故障诊断系统设计 [J]. 吉林化工学院学报, 2021, 38(7): 68-73.
[7] 朱莉, 陈辉. 基于深度学习的单幅图像三维重建算法 [J]. 吉林化工学院学报, 2020, 37(1): 58-62.
[8] 王文武. 基于数控加工中心GSK983Ma-H系统的机床维护及故障诊断探究 [J]. 吉林化工学院学报, 2018, 35(11): 40-42.
[9] 朱福成. 汽车CAN总线系统故障诊断技术浅析[J]. 吉林化工学院学报, 2018, 35(1): 76-80.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed