Please wait a minute...
吉林化工学院学报, 2022, 39(11): 38-41     https://doi.org/10.16039/j.cnki.cn22-1249.2022.11.008
  本期目录 | 过刊浏览 | 高级检索 |
基于卷积神经网络的电子鼻分类识别
吴青云1,邹亚囡2*,史雪莹1
1.吉林化工学院 信息与控制工程学院,吉林 吉林 132022;2.吉林化工学院 理学院,吉林 吉林 132022
Electronic Nose Classification Recognition based on Convolutional Neural Network
WU Qingyun1,ZOU Yanan2* ,SHI Xueying1
下载:  PDF (486KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在混合气体识别的研究中,针对目前电子鼻应用于化工污染物种类监测时难以达到理想精度的问题,提出了一个基于卷积神经网络的气体分类识别算法。首先利用卷积神经网络的自适应特征提取能力,有效降低原始数据对后续操作的影响;其次进行多次实验训练,对卷积神经网络进行参数优化,提高网络模型性能;最后将提出的卷积神经网络算法与BP神经网络算法分别应用于加州大学公开数据集中的一氧化碳和乙烯混合气体的实验数据中。实验结果表明,卷积神经网络算法对此数据集的气体种类检测准确率达到93%,比BP神经网络算法应用于气体识别时精度更高,误差更小,为电子鼻系统气体种类检测提供了一种新的方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴青云
邹亚囡
史雪莹
关键词:  电子鼻  卷积神经网络  气体识别  BP神经网络  气体传感器阵列     
Abstract: 

In the study of mixed gas identification, a gas classification recognition algorithm based on convolutional neural network is proposed to solve the problem that it is difficult to achieve ideal accuracy when electronic nose is used in the monitoring of chemical pollutant types. Firstly, the adaptive feature extraction ability of convolutional neural network is used to effectively reduce the impact of original data on subsequent operations. Secondly, several experiments are conducted to optimize the parameters of the convolutional neural network to improve the performance of the network model. Finally, the proposed convolutional neural network algorithm and BP neural network algorithm are applied to the experimental data of carbon monoxide and ethylene mixture gas in the public dataset of the University of California, respectively. The experimental results show that the gas species detection accuracy of the convolutional neural network algorithm in this dataset reaches 93%,which is higher accuracy and smaller error than the BP neural network algorithm when applied to gas identification, which provides a new method for gas species detection in the electronic nose system.

Key words:  electronic nose    convolutional neural network    gas identification    BP neural network    gas sensor array
               出版日期:  2022-11-25      发布日期:  2022-11-25      整期出版日期:  2022-11-25
ZTFLH:  TP183  
引用本文:    
吴青云, 邹亚囡, 史雪莹. 基于卷积神经网络的电子鼻分类识别 [J]. 吉林化工学院学报, 2022, 39(11): 38-41.
WU Qingyun, ZOU Yanan , SHI Xueying. Electronic Nose Classification Recognition based on Convolutional Neural Network . Journal of Jilin Institute of Chemical Technology, 2022, 39(11): 38-41.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2022.11.008  或          http://xuebao.jlict.edu.cn/CN/Y2022/V39/I11/38
[1] 辛瑞昊 , 王甜甜 , 苗冯博 , 董哲原 , 马占森 , 冯欣. 基于深度学习的机械轴承故障智能诊断 [J]. 吉林化工学院学报, 2022, 39(11): 25-29.
[2] 钟楚轶, 朱建军. 人体活动识别数据集的数据处理方法 [J]. 吉林化工学院学报, 2020, 37(3): 81-84.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed