Please wait a minute...
吉林化工学院学报, 2022, 39(11): 25-29     https://doi.org/10.16039/j.cnki.cn22-1249.2022.11.005
  本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的机械轴承故障智能诊断
辛瑞昊1 , 王甜甜1 , 苗冯博1 ,董哲原1  , 马占森1  ,冯欣2*
1.吉林化工学院 信息与控制工程学院,吉林 吉林 132022;2.吉林化工学院 理学院,吉林 吉林 132022
Intelligent Diagnosis of Mechanical Bearing Faults based on Deep Learning
XIN Ruihao1,  MIAO Fengbo1 , WANG Tiantian1 , DONG Zheyuan1,  CONG Ping1,  FENG Xin2*
下载:  PDF (2275KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

智能故障诊断对于提高智能制造的可靠性具有重要意义。基于深度学习的故障诊断方法在工业领域已经取得了很大的成功,但是不同的模型提取的特征存在一定的差异。针对数据特征提取不全面等问题,提出一种基于深度学习的融合网络模型(CLOD)。首先通过傅里叶变换对故障信号进行时频分析,得到时频谱样本,然后将样本送入经过LSTM模型和改进的CNN模型融合后的卷积网络模型(CLOD)中训练学习,最后通过更新网络参数来提高模型性能,实现轴承故障精确智能诊断。与传统方法比较,CLOD在保证准确率的基础上,极大的增加了模型的拟合速度和稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛瑞昊
王甜甜
苗冯博
董哲原
马占森
冯欣
关键词:  故障诊断  傅里叶变换  卷积神经网络  特征融合  深度学习     
Abstract: 

Intelligent fault diagnosis is important for improving the reliability of smart manufacturing. Fault diagnosis methods based on deep learning have been very successful in industry, but there are some differences in the features extracted by different models. A fusion network model (CLOD) based on deep learning is proposed for problems such as incomplete data feature extraction. Firstly, a time-frequency analysis of the fault signal is carried out by Fourier transform to obtain a time-frequency spectrum sample, then the sample is fed into a convolutional network model (CLOD) trained and learned after the fusion of LSTM model and improved CNN model, and finally the model performance is improved by updating the network parameters to achieve accurate and intelligent diagnosis of bearing faults. Compared with the traditional method, CLOD greatly increases the fitting speed and stability of the model on the basis of guaranteed accuracy.

Key words:  fault diagnosis    fourier transform    convolutional neural network    feature fusion    deep learning
               出版日期:  2022-11-25      发布日期:  2022-11-25      整期出版日期:  2022-11-25
TP391  
引用本文:    
辛瑞昊 , 王甜甜 , 苗冯博 , 董哲原 , 马占森 , 冯欣. 基于深度学习的机械轴承故障智能诊断 [J]. 吉林化工学院学报, 2022, 39(11): 25-29.
XIN Ruihao, MIAO Fengbo , WANG Tiantian , DONG Zheyuan, CONG Ping, FENG Xin. Intelligent Diagnosis of Mechanical Bearing Faults based on Deep Learning . Journal of Jilin Institute of Chemical Technology, 2022, 39(11): 25-29.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2022.11.005  或          https://xuebao.jlict.edu.cn/CN/Y2022/V39/I11/25
[1] 张天驰, 于紫南. 基于自定义深度学习网络双馈风机接入弱电网故障识别[J]. 吉林化工学院学报, 2024, 41(5): 54-59.
[2] 王敏. 自适应学习中基于CNN和IIDLA的图像识别方法研究[J]. 吉林化工学院学报, 2024, 41(3): 56-61.
[3] 王辅民, 周红娟, 冯国亮, 邢雪. 基于特征融合的空压机故障诊断算法研究[J]. 吉林化工学院学报, 2024, 41(3): 37-41.
[4] 陈娜, 孔繁星, 王彦旭, 何腾飞, 李胜男. 基于EfficientNetV2的车刀磨损检测方法[J]. 吉林化工学院学报, 2024, 41(3): 21-24.
[5] 陈娜, 孔繁星, 王彦旭, 何腾飞, 李胜男. 基于卷积神经网络的车刀磨损研究 [J]. 吉林化工学院学报, 2023, 40(9): 43-47.
[6] 董如意, 崔冉. 基于YOLOV5L的交通信号灯识别研究 [J]. 吉林化工学院学报, 2023, 40(9): 37-42.
[7] 张 鋆, 李温温. RRT algorithm; path planning; target offset; variable step size; cubic B-spline curve 基于改进YOLOv5s的玉米田间杂草检测方法 [J]. 吉林化工学院学报, 2023, 40(5): 26-33.
[8] 金何. 基于深度学习融合网络的交直流电网故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(3): 93-98.
[9] 任洛莹 , 刘兴德 , 谢延楠 , 胡文松 , 余鹏泽, 孔志成. CGB-YOLO:用于检测钢铁表面缺陷的YOLO算法 [J]. 吉林化工学院学报, 2023, 40(11): 38-44.
[10] 辛 鹏, 杨剀勋, 文孝强. 基于改进SE-CNN的风电机组故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(1): 34-40.
[11] 余思黔, 赵麒荣, 林嘉晨, 贾雁飞, 陈广大. 基于深度学习的核桃外壳缺陷检测 [J]. 吉林化工学院学报, 2022, 39(9): 80-85.
[12] 刘麒, 尹港 , 王影, 叶泽 . 基于深度学习的水面漂浮物识别算法设计 [J]. 吉林化工学院学报, 2022, 39(7): 28-33.
[13] 吴青云, 邹亚囡, 史雪莹. 基于卷积神经网络的电子鼻分类识别 [J]. 吉林化工学院学报, 2022, 39(11): 38-41.
[14] 王升, 林琳, 陈诚, 张杰, 史建成. 基于层次化混合分类器的含未知故障风机轴承故障诊断方法 [J]. 吉林化工学院学报, 2021, 38(9): 36-40.
[15] 魏佳佳. 基于热电联产的汽轮机组油膜振荡故障诊断系统设计 [J]. 吉林化工学院学报, 2021, 38(7): 68-73.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed