基于深度学习的机械轴承故障智能诊断
辛瑞昊1 , 王甜甜1 , 苗冯博1 ,董哲原1 , 马占森1 ,冯欣2*
1.吉林化工学院 信息与控制工程学院,吉林 吉林 132022;2.吉林化工学院 理学院,吉林 吉林 132022
Intelligent Diagnosis of Mechanical Bearing Faults based on Deep Learning
XIN Ruihao1 , MIAO Fengbo1 , WANG Tiantian1 , DONG Zheyuan1 , CONG Ping1 , FENG Xin2*
摘要
智能故障诊断对于提高智能制造的可靠性具有重要意义。基于深度学习的故障诊断方法在工业领域已经取得了很大的成功,但是不同的模型提取的特征存在一定的差异。针对数据特征提取不全面等问题,提出一种基于深度学习的融合网络模型(CLOD)。首先通过傅里叶变换对故障信号进行时频分析,得到时频谱样本,然后将样本送入经过LSTM模型和改进的CNN模型融合后的卷积网络模型(CLOD)中训练学习,最后通过更新网络参数来提高模型性能,实现轴承故障精确智能诊断。与传统方法比较,CLOD在保证准确率的基础上,极大的增加了模型的拟合速度和稳定性。
关键词:
故障诊断
傅里叶变换
卷积神经网络
特征融合
深度学习
Abstract:
Intelligent fault diagnosis is important for improving the reliability of smart manufacturing. Fault diagnosis methods based on deep learning have been very successful in industry, but there are some differences in the features extracted by different models. A fusion network model (CLOD) based on deep learning is proposed for problems such as incomplete data feature extraction. Firstly, a time-frequency analysis of the fault signal is carried out by Fourier transform to obtain a time-frequency spectrum sample, then the sample is fed into a convolutional network model (CLOD) trained and learned after the fusion of LSTM model and improved CNN model, and finally the model performance is improved by updating the network parameters to achieve accurate and intelligent diagnosis of bearing faults. Compared with the traditional method, CLOD greatly increases the fitting speed and stability of the model on the basis of guaranteed accuracy.
Key words:
fault diagnosis
fourier transform
convolutional neural network
feature fusion
deep learning
出版日期: 2022-11-25
发布日期: 2022-11-25
整期出版日期: 2022-11-25
引用本文:
辛瑞昊 , 王甜甜 , 苗冯博 , 董哲原 , 马占森 , 冯欣.
基于深度学习的机械轴承故障智能诊断
[J]. 吉林化工学院学报, 2022, 39(11): 25-29.
XIN Ruihao, MIAO Fengbo , WANG Tiantian , DONG Zheyuan, CONG Ping, FENG Xin.
Intelligent Diagnosis of Mechanical Bearing Faults based on Deep Learning
. Journal of Jilin Institute of Chemical Technology, 2022, 39(11): 25-29.
链接本文:
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2022.11.005
或
http://xuebao.jlict.edu.cn/CN/Y2022/V39/I11/25
[1]
. [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0
.
[2]
. [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0
.
[3]
SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System
[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1
-3
.
[4]
ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun.
Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric
[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4
-7
.
[5]
WU Ping, REN Hong, LU Fei, WEI Qingling.
A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound
[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8
-10
.
[6]
YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong.
Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb
[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11
-15
.
[7]
LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li.
Study on the Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its Purification Method
[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16
-23
.
[8]
SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu.
Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted
[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24
-31
.
[9]
TAN Li-hui, TAN Hong-wu.
The Crashworthiness Analysis of different Cross-Section Thin-Walled Components
[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32
-35
.
[10]
YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin.
The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution
[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36
-40
.
Viewed
Full text
Abstract
Cited
Shared
Discussed