Please wait a minute...
吉林化工学院学报, 2022, 39(9): 80-85     https://doi.org/10.16039/j.cnki.cn22-1249.2022.09.017
  本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的核桃外壳缺陷检测
余思黔,赵麒荣,林嘉晨,贾雁飞*,陈广大
北华大学 电气与信息工程学院,吉林,132013
Walnut Shell Defect Detection based on Deep Learning
YU Siqian, ZHAO Qirong,LIN Jiachen ,JIA Yanfei* ,CHEN Guangda
下载:  PDF (2374KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

实现了对核桃外壳缺陷的快速识别,提高基于机器视觉的核桃分选效率,提出了一种基于改进的  YOLOv5s核桃外壳缺陷检测方法。YOLOv5s网络中大量采用卷积核为3的卷积进行特征提取,为降低网络的计算量,本文提出利用深度可分离卷积代替残差网络中所采用的卷积核为3的卷积,提高对核桃外壳检测的速度。此外,为了保证精度能够满足要求,采用了改进的均值聚类对检测框进行初始化,提高生成的检测框的质量,进而提高核桃外壳缺陷检测精度。由于聚类方法相对整个网络结构计算量较小,因此对核桃外壳检测的速度影响较小。通过实验对比分析,改进后的YOLOv5s能够快速识别出核桃外壳缺陷,而且识别精度基本保持不变。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余思黔
赵麒荣
林嘉晨
贾雁飞
陈广大
关键词:  深度学习  机器视觉  深度可分离卷积  核桃外壳缺陷检测     
Abstract: 

In order to realize the rapid recognition of walnut shell defects and improve the walnut sorting efficiency based on machine vision, a walnut shell defect detection method based on improved yolov5s is proposed. In yolov5s network, convolution with convolution kernel size 3 is widely used for feature extraction. In order to reduce the amount of network calculation, this paper proposes to use depth wise separable convolution instead of convolution with convolution kernel size 3 in residual network, so as to improve the speed of walnut shell detection. In addition, in order to ensure that the accuracy can meet the requirements, this paper also uses the improved mean clustering to initialize the detection frame, improve the quality of the generated detection frame, and then improve the detection accuracy of walnut shell defects. Because the clustering method has less computation than the whole network structure, it has little impact on the speed of peach shell detection. Through experimental comparison and analysis, the improved yolov5s can quickly identify walnut shell defects, and the recognition accuracy remains basically unchanged.

Key words:  deep Leaning    machine vision    depth wise separable convolution    walnut shell defect detection
               出版日期:  2022-09-25      发布日期:  2022-09-25      整期出版日期:  2022-09-25
ZTFLH:  TP398.1  
引用本文:    
余思黔, 赵麒荣, 林嘉晨, 贾雁飞, 陈广大. 基于深度学习的核桃外壳缺陷检测 [J]. 吉林化工学院学报, 2022, 39(9): 80-85.
YU Siqian, ZHAO Qirong, LIN Jiachen , JIA Yanfei , CHEN Guangda. Walnut Shell Defect Detection based on Deep Learning . Journal of Jilin Institute of Chemical Technology, 2022, 39(9): 80-85.
链接本文:  
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2022.09.017  或          http://xuebao.jlict.edu.cn/CN/Y2022/V39/I9/80
[1] 刘麒, 尹港 , 王影, 叶泽 . 基于深度学习的水面漂浮物识别算法设计 [J]. 吉林化工学院学报, 2022, 39(7): 28-33.
[2] 李百明. 基于机器视觉的钢珠直径测量系统设计 [J]. 吉林化工学院学报, 2021, 38(1): 58-62.
[3] 王雪晴, 刘锦涛, 卫亚博, 赵换丽. 基于机器视觉和LabVIEW的有机玻璃缺陷检测研究 [J]. 吉林化工学院学报, 2021, 38(1): 68-73.
[4] 朱莉, 陈辉. 基于深度学习的单幅图像三维重建算法 [J]. 吉林化工学院学报, 2020, 37(1): 58-62.
[1] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[2] . [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 0 .
[3] SHAO Bao-li, LU Da, ZHAO Dong-hui. The Application of Dimensional Analysis in the Physical Quantity Conversion between Physical System and Numerical System [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 1 -3 .
[4] ZHANG Jian, ZHAO Xiang, QU Bo, WU Qi, LIU Yu-tong, LI Yu-shi, LIU Qun. Application of Phosphorus-sulfur-nitrogen Composite Flame Retardant in Cotton Fabric [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 4 -7 .
[5] WU Ping, REN Hong, LU Fei, WEI Qingling. A Functional Material on Recognition of Zn(II) ions based on the New Azo Compound [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 8 -10 .
[6] YANG Yan-jun, WANG Ya-hong, Yang Xiu-dong. Process Aptimization of Surfactant Assisted Extraction of Total Polyphenols from Kyllinga Brevifolia Rottb [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 11 -15 .
[7] LIU Jin-lu, LEI Yong-ping, WANG xiao-lin, ZHONG fang-li. Study on the  Purification Method of Total Saponins fromFruit of Rosa Davuvrica Pall. and its  Purification Method [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 16 -23 .
[8] SONG Jian-gang, ZHONG Fang-li, WANG Xiao-lin, LIN Yu. Study on Extraction of Anthocyanin from Aronia melanocarpa Fruit by Ionic liquid Ultrasound Assisted [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 24 -31 .
[9] TAN Li-hui, TAN Hong-wu. The Crashworthiness Analysis of different Cross-Section Thin-Walled Components [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 32 -35 .
[10] YU Wen-xin, ZHENG Kai, WANG Li-hui, LIU Hai-bo, Wang Jian-xin. The Influence of Magnetostrictive Transducer Radiation Plate material on Radiation Sound Field Distribution [J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 36 -40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed