Please wait a minute...
吉林化工学院学报, 2021, 38(9): 78-81     https://doi.org/10.16039/j.cnki.cn22-1249.2021.09.015
  本期目录 | 过刊浏览 | 高级检索 |
基于march算法的网络多维数据优化存储方法
胡茂美
合肥滨湖职业技术学院 机电与汽车工程学院,安徽 合肥  230601
Optimal Network Multidimensional Data Storage Method Based on MARCH Algorithm
HU Maomei
下载:  PDF (547KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

传统的多维数据优化存储方法存在存储性能较差,信噪比较低的问题。为此,提出一种基于march算法的网络多维数据优化存储方法。根据映射函数,对网络多维数据进行映射函数整数编码;通过映射获得多维数组的坐标值,完成维数据组织构建;依据二进制编码获取更高的网络多维数据存储效率;利用顺序存储与分块存储完成度量数据组织,通过块的压缩存储节约数据存储占用空间;利用march算法测试网络多维数据存储方法,完成存储方法的优化。实验结果表明,在不同压缩比时,该方法在数据存储过程中的最高信噪比可达96;在不同稀疏度时,该方法在数据存储过程中的信噪比依旧较高,具备较优的数据存储性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡茂美
关键词:  Maarch算法  网络  多维数据  优化存储  维数据  度量数据     
Abstract: 

The traditional multi-dimensional data optimized storage methods have the problems of poor storage performance and low signal-to-noise ratio. Therefore, a network multidimensional data optimal storage method based on March algorithm is proposed. According to the mapping function, the network multidimensional data is encoded by integer mapping function.The coordinate values of multidimensional array are obtained by mapping to complete the construction of dimensional data organization. Higher storage efficiency of network multidimensional data is obtained according to binary coding; Sequential storage and block storage are used to organize measurement data, and the occupied space of data storage is saved through block compression storage. Use March algorithm to test the network multidimensional data storage method and complete the optimization of the storage method. The experimental results show that the maximum signal-to-noise ratio of this method in the data storage process can reach 96 at different compression ratios. At different sparsity, the signal-to-noise ratio of this method is still high in the data storage process, and has better data storage performance.

Key words:  Maarch algorithm    Network    Multidimensional data    Optimized storage    D data    Measurement data
               出版日期:  2021-09-25      发布日期:  2021-09-25      整期出版日期:  2021-09-25
TP311.13  
引用本文:    
胡茂美. 基于march算法的网络多维数据优化存储方法 [J]. 吉林化工学院学报, 2021, 38(9): 78-81.
HU Maomei. Optimal Network Multidimensional Data Storage Method Based on MARCH Algorithm . Journal of Jilin Institute of Chemical Technology, 2021, 38(9): 78-81.
链接本文:  
https://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2021.09.015  或          https://xuebao.jlict.edu.cn/CN/Y2021/V38/I9/78
[1] 张文智, 安宇轩. 高校辅导员网络思想政治工作能力的现状及成因研究[J]. 吉林化工学院学报, 2024, 41(6): 58-62.
[2] 白 雪 , 赵 亮. 大学生网络安全素养水平调查及提升策略探析[J]. 吉林化工学院学报, 2024, 41(6): 39-44.
[3] 张天驰, 于紫南. 基于自定义深度学习网络双馈风机接入弱电网故障识别[J]. 吉林化工学院学报, 2024, 41(5): 54-59.
[4] 王新, 程瑶瑶. 以“战斗力为标准”建设网络思想政治工作队伍 [J]. 吉林化工学院学报, 2024, 41(4): 76-79.
[5] 陈娜, 孔繁星, 王彦旭, 何腾飞, 李胜男. 基于EfficientNetV2的车刀磨损检测方法[J]. 吉林化工学院学报, 2024, 41(3): 21-24.
[6] 刘麒, 谭丁诚, 刘振刚, 王影. 基于DBO-BP的工业机器人定位误差补偿方法[J]. 吉林化工学院学报, 2024, 41(1): 59-66.
[7] 陈娜, 孔繁星, 王彦旭, 何腾飞, 李胜男. 基于卷积神经网络的车刀磨损研究 [J]. 吉林化工学院学报, 2023, 40(9): 43-47.
[8] 李乾鑫 , 张胜杰, 于天暝. 基于模糊认知图和粒计算的长期风速区间预测研究 [J]. 吉林化工学院学报, 2023, 40(7): 71-76.
[9] 孙雨晴. 高校网络报销工作探析 [J]. 吉林化工学院学报, 2023, 40(6): 88-90.
[10] 俞军, 高振坤.
基于GA-BP神经网络的基金评级研究 #br#
[J]. 吉林化工学院学报, 2023, 40(5): 72-78.
[11] 贾鑫. 基于NSCT域平均梯度能量驱动红外与可见光图像融合算法 [J]. 吉林化工学院学报, 2023, 40(3): 86-92.
[12] 孙洪亮, 王超, 杜旭. 时延QoS约束下VLC-RF网络资源匹配算法 [J]. 吉林化工学院学报, 2023, 40(3): 22-25.
[13] 金何. 基于深度学习融合网络的交直流电网故障诊断方法研究 [J]. 吉林化工学院学报, 2023, 40(3): 93-98.
[14] 白 雪, 赵 亮. 网络学习参与度调查分析与提升策略构建 [J]. 吉林化工学院学报, 2023, 40(2): 22-26.
[15] 孟亚男, 黄迎旭. 基于粒子群优化的神经网络PID控制器在供热系统的研究 [J]. 吉林化工学院学报, 2023, 40(11): 50-53.
[1] WANG Ya-hong, JIA Ying-chao. Optimization for Soxhlet Extraction of Total Flavonoids from Eggplant Root by Using Response Surface Methodology[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 1 -6 .
[2] PAN Hong-wei, ZHOU Hong-li. Research Progress on Extraction Technology and Component Analysis of Volatile Flavor Compounds in Plants[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 7 -10 .
[3] ZHOU Zhen-qiang, WANG Kai-bao, CHEN Yu-tian, HAN Ji, HOU Dai-bing, GUO Wen-qi. Analysis of the Design and Dynamic Characteristics of Recyclable Garbage Crushing Device[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 31 -35 .
[4] ZHU Qi-rui, ZHANG Yu-feng, LI Yang-xin, WU Dong-jun, BI Shuai-nan, ZHOU Rui-jie, YOU Sai-sai. The Structural Design and Parameter Analysis of the Chair Structure of Quadriplegia of Cerebral Palsy[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 40 -44 .
[5] ZHANG Yun-peng. Preparation and Characterization of Er3+Y3+Yb3+ Co-doped Al2O3 Luminescence Materials[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 58 -63 .
[6] MI Ya-wei. Proof of the Manifold of n Manifold[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 64 -66 .
[7] XU You-zhuan, ZHOU Hou-qing. The Lower Bounds of Energy for Some Circulant Graph[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(3): 67 -72 .
[8] ZHOU Hong-li, ZHANG Yang, CUI Hao, XUE Jian-fei. Primary Exploration of the Applied Pharmaceutical Talents Training in Ordinary Engineering Colleges Based on Social Needs and R ecruitment Drives[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(2): 1 -4 .
[9] YANG Xiu-dong, WANG Ya-hong, ZHANG Pin-mei, YANG Yan-jun, CUI Hao, ZHOU Hong-li. Discussion on the Practice Teaching Reform of Pharmaceutical Engineering Based on Engineering Education Professional Accreditation[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(2): 5 -7 .
[10] LI Long, WANG Xue-mei. Research on Higher Education Assessment Mode Based on Formative Evaluation and Information Entropy Theory[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(2): 8 -12 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed